Hello, Guest!

Instructional Focus Document
Anatomy and Physiology
TITLE : Unit 13: Digestive System, Nutrition, and Metabolism SUGGESTED DURATION : 11 days

Unit Overview

During this Unit

This unit bundles expectations that address the structure and function of the digestive system. Students evaluate metabolic processes involved in the processing and storage of energy, and they analyze the effects of energy deficiencies and excesses on the human body.

 

Streamlining Note

In Biology TEKS B.4A, students now compare and contrast scientific explanations for cellular complexity in addition to previous expectations. Students no longer compare the structure of biomolecules in Biology TEKS B.9A but continue to compare the functions. Biology TEKS B.9B now includes energy conversions moved from former TEKS B.4B. The former Biology TEKS B.11A, describe the role of internal feedback mechanisms, was removed during the streamlining process implemented in 2018-2019. Students continue to understand the concept of process regulation in animals in the context of TEKS B.10A and homeostasis at the cellular level is addressed in TEKS B.4B.

 

Prior Content Connections

  • Biology
    • B.4 – The student knows that cells are the basic structures of all living things with specialized parts that perform specific functions and that viruses are different from cells. The student is expected to:
      • B.4A – Compare and contrast prokaryotic and eukaryotic cells, including their complexity, and compare and contrast scientific explanations for cellular complexity.
      • B.4B – Investigate and explain cellular processes, including homeostasis and transport of molecules.
    • B.9 – The student knows the significance of various molecules involved in metabolic processes and energy conversions that occur in living organisms. The student is expected to:
      • B.9A – Compare the functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids.
      • B.9C – Identify and investigate the role of enzymes.
    • B.10 – The student knows that biological systems are composed of multiple levels. The student is expected to:
      • B.10A – Describe the interactions that occur among systems that perform the functions of regulation, nutrient absorption, reproduction, and defense from injury or illness in animals.
      • B.10C – Analyze the levels of organization in biological systems and relate the levels to each other and to the whole system.
    • B.11 – The student knows that biological systems work to achieve and maintain balance.

                                                               

After this Unit

Students will continue to analyze metabolic processes in the study of the respiratory system and the urinary system.

 

According to Research

“By the end of the 12th grade, students should know that:

  • Communication between cells is required to coordinate their diverse activities. Cells may secrete molecules that spread locally to nearby cells or that are carried in the bloodstream to cells throughout the body. Nerve cells transmit electrochemical signals that carry information much more rapidly than is possible by diffusion or blood flow.
  • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction.
  • The dissemination of scientific information is crucial to its progress. Some scientists present their findings and theories in papers that are delivered at meetings or published in scientific journals. Those papers enable scientists to inform others about their work, to expose their ideas to criticism by other scientists, and, of course, to stay abreast of scientific developments around the world.
  • Scientists can bring information, insights, and analytical skills to bear on matters of public concern. Acting in their areas of expertise, scientists can help people understand the likely causes of events and estimate their possible effects.

American Association for the Advancement of Science. (2009). Benchmarks on-line. Retrieved from http://www.project2061.org/publications/bsl/online.

 

  • TxCCRS:
    • III. Foundation Skills: Scientific Application of Communication – B3 – Recognize scientific and technical vocabulary in the field of study and use this vocabulary to enhance clarity of communication.
    • VI. Biology – B5 – Know how organisms respond to presence or absence of oxygen, including mechanisms of fermentation.
    • VI. Biology – F1 – Describe, compare, and contrast structures and processes that allow gas exchange, nutrient uptake and processing, waste excretion, nervous and hormonal regulation, and reproduction in plants, animals, and fungi; give examples of each.

Texas Higher Education Coordinating Board. (2009). Texas College and Career Readiness Standards. Retrieved from http://www.thecb.state.tx.us.


Scientists investigate natural phenomena in order to understand and explain each phenomenon in terms of systems.

  • What is the value of knowing and understanding natural phenomena?
  • How are the properties of systems and their components related to their classification?
  • How are the components, processes, and / or patterns of systems interrelated?

 

Scientific investigation is an orderly process to ensure that scientific claims are credible.

  • Why is credibility so important in the scientific field?
  • How is scientific knowledge generated and validated?

 

Data is systematically collected, organized, and analyzed in terms of patterns and relationships to develop reasonable explanations and make predictions.

  • What gives meaning to data?
  • What is the value of observing patterns and relationships in data?

 

Scientists analyze, evaluate, and critique each other’s work using principles of scientific investigations in order to build on one another’s ideas through new investigations.

  • In what ways have scientific explanations impacted scientific thought and society over time?
  • What is the value of scientific literacy?
Unit Understandings
and Questions
Overarching Concepts
and Unit Concepts
Performance Assessment(s)

The digestive system utilizes a variety of mechanisms to process and store energy and nutrients.

  • What modes does the digestive system use to process and store essential nutrients and adequate calories to support growth, maintenance, and repair of tissues?
  • What types of specialized structures are necessary for each mode of energy processing and / or storage?

Systems

  • Digestive system

 

Classifications

  • Alimentary canal
  • Accessory organs

 

Properties

  • Mechanical digestion
  • Chemical digestion
  • Absorption
  • Propulsion
  • Defecation

 

Patterns

  • Segmentation
  • Peristalsis

 

Models

  • Digestive system organs
Assessment information provided within the TEKS Resource System are examples that may, or may not, be used by your child’s teacher. In accordance with section 26.006 (2) of the Texas Education Code, "A parent is entitled to review each test administered to the parent’s child after the test is administered." For more information regarding assessments administered to your child, please visit with your child’s teacher.

An optimal diet provides essential nutrients and adequate calories to support growth, maintenance, and repair of tissues. 

  • What are the effects of energy excesses and energy deficits on body system functions?
  • In what ways has scientific information and research impacted the dietary needs of the world population?

Systems

  • Digestive system

 

Classifications

  • Energy excesses
  • Energy deficits

 

Properties

  • Primary malnutrition
  • Secondary malnutrition

 

Patterns

  • Starvation
  • Kwashiorkor
  • Marasmus
  • Malabsorption
  • Overeating

 

Constancy

  • Energy balance

 

Change

  • Methods of food production
  • Modification of food sources
Assessment information provided within the TEKS Resource System are examples that may, or may not, be used by your child’s teacher. In accordance with section 26.006 (2) of the Texas Education Code, "A parent is entitled to review each test administered to the parent’s child after the test is administered." For more information regarding assessments administered to your child, please visit with your child’s teacher.

MISCONCEPTIONS / UNDERDEVELOPED CONCEPTS

Misconceptions:

  • Students may consider the digestive system as a simple pathway for food rather than understanding the intricacy of the specialized structures involved within each organ necessary for digestion.
  • Students may think of digestion as a single process rather than understanding that it involves a sequence of mechanical and chemical processes.
  • Students may consider all enhanced food sources, such as GMOs, in a negative manner, rather than understanding what they actually are and the role they have in providing nutrition.

Underdeveloped Concepts:

  • Some students may have limited understandings of the processes involved to physically move food through the digestive system.
  • Some students may have limited understandings of the concept of energy balance.
  • Some students may have limited understandings of the types of and effects of malnutrition.
  • Some students may have limited understandings of the long-term effects of nutrition excesses and deficits.

Unit Vocabulary

Key Content Vocabulary:

  • Alimentary canal – digestive tract, pathway by which food enters the body and solid wastes are expelled
  • Chemical digestion – process of chemically breaking down food molecules into smaller molecules (e.g., polysaccharides into monosaccharides)
  • Gluconeogenesis – process of forming glucose from molecules other than carbohydrates
  • Glycogenesis – process of forming glycogen from glucose
  • Glycogenolysis – process of breaking down glycogen to form glucose
  • Lipogenesis – process of converting carbohydrates into fatty acids
  • Lipolysis – process of breaking down lipids to form fatty acids
  • Mechanical digestion – process of physically breaking down food into smaller pieces (e.g., chewing)
  • Peristalsis – alternating contraction and relaxation of smooth muscle which propels food in one direction through the digestive tract
  • Primary malnutrition – condition from energy excesses or deficits due to diet alone
  • Proteolysis – process of breaking down proteins to form amino acids
  • Secondary malnutrition (malabsorption) – condition in which an individual’s characteristics make a normally adequate diet insufficient or excessive
  • Segmentation – alternating contraction and relaxation of smooth muscle which moves food back and forth to continue mechanical digestion

 

Related Vocabulary:

  • Absorption
  • Defecation
  • Ingestion
  • Kwashiorkor
  • Marasmus
  • Propulsion
  • Starvation
Unit Assessment Items System Resources Other Resources

Show this message:

Unit Assessment Items that have been published by your district may be accessed through Search All Components in the District Resources tab. Assessment items may also be found using the Assessment Center if your district has granted access to that tool.

Show this message:

System Resources may be accessed through Search All Components in the District Resources Tab.

State:

Texas Education Agency Texas Safety Standards

http://www.tea.state.tx.us/index2.aspx?id=5483 (look under Documents)


TAUGHT DIRECTLY TEKS

TEKS intended to be explicitly taught in this unit.

TEKS/SE Legend:

  • Knowledge and Skills Statements (TEKS) identified by TEA are in italicized, bolded, black text.
  • Student Expectations (TEKS) identified by TEA are in bolded, black text.
  • Portions of the Student Expectations (TEKS) that are not included in this unit but are taught in previous or future units are indicated by a strike-through.

Specificity Legend:

  • Supporting information / clarifications (specificity) written by TEKS Resource System are in blue text.
  • Unit-specific clarifications are in italicized, blue text.
  • Information from Texas Education Agency (TEA), Texas College and Career Readiness Standards (TxCCRS), and American Association for the Advancement of Science (AAAS) Project 2061 is labeled.
  • A Partial Specificity label indicates that a portion of the specificity not aligned to this unit has been removed.
TEKS# SE# TEKS SPECIFICITY
AP.1 The student demonstrates professional standards/employability skills as required by business and industry. The student is expected to:
AP.1A Demonstrate verbal and non-verbal communication in a clear, concise, and effective manner.

Demonstrate

VERBAL AND NON-VERBAL COMMUNICATION

Including, but not limited to:

  • General communication skills
    • Professionalism
      • Considerate of audience
      • Appropriate to the situation
      • Correct grammar – spoken and written
      • Questioning strategies (open vs. closed ended)
      • Terms with precise meanings for discussing the human body
        • Medical terminology
          • Roots
          • Prefixes
          • Suffixes
          • Common layman’s terms
      • Cultural competence awareness – a set of behaviors, practices, attitudes, and policies that come together amongst a group to enable effective work to be done in a cross-cultural situation
        • Culture – the sum of the values, beliefs, standards, languages, thinking patterns, behavioral norms, communication styles, etc. that guide decisions and actions of a group through time
  • Verbal communication skills
    • Explicit communication skills – information conveyed through spoken words
      • Pitch
      • Tone
      • Speed of speech
      • Word pronunciation
      • Active listening
  • Non-verbal communication skills
    • Implicit communication – information and meaning conveyed without spoken words
      • Awareness of body language
    • Written communication
      • Spelling
      • Formatting
  • Common barriers to communication
    • Physical disabilities
      • Aphasia
      • Hearing loss
      • Impaired vision
    • Psychological barriers
      • Attitudes
      • Bias
      • Prejudice
      • Stereotyping
  • Examples
    • Patient medical history
    • Presentation of medical information to a healthcare professional, a patient, and your classmates
    • How different cultural groups might respond to a medical scenario
    • Information directed to a certain cultural group
    • Examples of technical and expository writing
      • Topical speech
      • Detailed lab report providing and explaining data
      • Article analysis from a professional journal
Note(s):
  • TxCCRS:
    • III. Foundation Skills: Scientific Application of Communication – A1 – Use correct application of writing practices in scientific communication.
    • III. Foundation Skills: Scientific Application of Communication – B3 – Recognize scientific and technical vocabulary in the field of study and use this vocabulary to enhance clarity of communication.
    • III. Foundation Skills: Scientific Application of Communication – C1 – Prepare and present scientific/technical information in appropriate formats for various audiences.
  • Project 2061: By the end of the 12th grade, students should be able to:
    • Use tables, charts, and graphs in making arguments and claims in oral, written, and visual presentations. 12D/H7
AP.1B Exhibit the ability to cooperate, contribute, and collaborate as a member of a team.

Exhibit

THE ABILITY TO COOPERATE, CONTRIBUTE, AND COLLABORATE AS A MEMBER OF A TEAM

Including, but not limited to:

  • Cooperate
    • Exchange relevant information and resources in support of each other’s individual goals, rather than a shared goal
  • Contribute
    • Play a significant part in bringing about a shared goal
  • Collaborate
    • Work together to create something new in support of a shared goal
  • Traits of successful team members
    • Competence
    • Dependability
    • Honesty
    • Initiative
    • Patience
    • Responsibility
    • Self-motivation
    • Tact
    • Willingness to learn
    • Follow a chain of command
    • Decision making
    • Flexibility
    • Integrity
    • Loyalty
  • Examples
    • Collaborate on a group presentation
    • Contribute and collaborate by assigning and carrying out a set of roles within your group
    • Cooperate by sharing knowledge with others to produce individual projects
Note(s):
  • TxCCRS:
    • I. Nature of Science – C1 – Collaborate on joint projects.
  • Project 2061: By the end of the 12th grade, students should be able to:
    • Participate in group discussions on scientific topics by restating or summarizing accurately what others have said, asking for clarification or elaboration, and expressing alternative positions. 12D/H6
AP.3 The student uses scientific methods and equipment during laboratory and field investigations. The student is expected to:
AP.3E Plan and implement descriptive, comparative, and experimental investigations, including asking questions, formulating testable hypotheses, and selecting equipment and technology.

Plan, Implement

DESCRIPTIVE, COMPARATIVE, AND EXPERIMENTAL INVESTIGATIONS

Including, but not limited to:

  • Descriptive investigations
    • Involve collecting qualitative and / or quantitative data to draw conclusions about a natural or man-made system
    • Includes a question, but no hypothesis
    • Observations are recorded, but no comparisons are made and no variables are manipulated
  • Comparative investigations
    • Involve collecting data on different organisms / objects / features / events or collecting data under different conditions to make a comparison
    • The hypothesis identifies one independent (manipulated) variable and one dependent (responding) variable
    • A fair test can be designed to measure variables so that the relationship between them is determined
      • A fair test is conducted by making sure that only one factor (variable) is changed at a time, while keeping all other conditions the same
  • Experimental investigations
    • Involve designing a fair test similar to a comparative investigation, but a control is identified
    • Variables are measured in an effort to gather evidence to support or not support a causal relationship
    • Often called a controlled experiment
  • Plan investigations
    • Ask questions
    • Formulate hypotheses
    • Select appropriate equipment and technology
  • Implement investigations
    • Obtain data that can be used to support, reject, or modify the hypothesis
Note(s):
  • TxCCRS:
    • I. Nature of Science – A3 – Formulate appropriate questions to test understanding of natural phenomena. 
    • I. Nature of Science – B1 – Design and conduct scientific investigations in which hypotheses are formulated and tested.
    • I. Nature of Science – D2 – Use computer models, applications, and simulations.
    • III. Foundation Skills: Scientific Applications of Communication – B2 – Set up apparatuses, carry out procedures and collect specified data from a given set of appropriate instructions.
  • TEA: Descriptive, comparative and experimental investigations (Texas Education Agency. (2007-2011). Laboratory and Field Investigations–FAQ, August 2010. Retrieved from http://www.tea.state.tx.us/index2.aspx?id=5483)
AP.3F

Collect and organize qualitative and quantitative data and make measurements with accuracy and precision using tools such as calculators, spreadsheet software, data-collecting probes, computers, standard laboratory glassware, microscopes, various prepared slides, stereoscopes, metric rulers, electronic balances, gel electrophoresis apparatuses, micropipettors, hand lenses, Celsius thermometers, hot plates, lab notebooks or journals, timing devices, Petri dishes, lab incubators, dissection equipment, meter sticks, and models, diagrams, or samples of biological specimens or structures.

Collect, Organize

DATA

Including, but not limited to:

  • Qualitative – an observation that describes the physical appearance or observable changes in the investigation
  • Quantitative – a numerical measurement taken during an investigation
  • Organize data
    • Graphs
    • Tables
    • Charts
    • Diagrams
    • Lists 
    • Concept maps
    • Graphic organizers
    • Feedback loops
    • Images (e.g., illustrations, sketches, photomicrographs)

Make

MEASUREMENTS WITH ACCURACY AND PRECISION USING TOOLS

Including, but not limited to:

  • Accuracy – the closeness of a measured value to a standard or known value
  • Precision – the closeness of two or more measurements to each other, independent of accuracy
  • Use appropriate standard international (SI) units
  • Tools
    • Data collecting probes
    • Computers
    • Standard laboratory glassware
    • Microscopes
    • Various prepared slides
    • Electronic balances
    • Celsius thermometers
    • Hot plates
    • Lab notebooks or journals (science notebooks)
    • Cameras
    • Models, diagrams, or samples of biological specimens or structures  
Note(s):
  • TxCCRS:
    • I. Nature of Science – D3 – Demonstrate appropriate use of a wide variety of apparatuses, equipment, techniques, and procedures for collecting quantitative and qualitative data.
    • II. Foundation Skills: Scientific Applications of Mathematics – F1 – Select and use appropriate Standard International (SI) units and prefixes to express measurements for real world problems.
    • III. Foundation Skills: Scientific Applications of Communication – B2 – Set up apparatuses, carry out procedures and collect specified data from a given set of appropriate instructions.
AP.3G Analyze, evaluate, make inferences, and predict trends from data.

Analyze, Evaluate, Make Inferences, Predict

TRENDS FROM DATA

Including, but not limited to:

  • Analyze – to study or determine the nature and relationship of the parts of something
  • Evaluate – to determine the significance, worth, or condition of, usually by careful appraisal and study
  • Infer – to form an opinion, based on known facts or evidence, as to the outcome of a thought or conclusion
  • Predict – to declare or indicate in advance; foretell on the basis of observation, experience, or scientific reasoning
  • Use appropriate mathematical calculations to analyze and manipulate data
    • Averaging
    • Percent change
    • Probabilities and ratios
    • Rate of change
    • Statistical analysis
  • Analyze and evaluate data (narrative, numerical, graphical) in order to make inferences and predict trends
    • Possible examples of data usage may include:
      • Prediction of the possible outcome of the investigation using only related scientific evidence collected prior to the investigation
      • Proposed inference, based on researched facts and evidence, serving as the hypothesis of the investigation
      • Evaluation of the validity of scientific data sets
      • Relationships among data sets
Note(s):
  • TxCCRS:
    • I. Nature of Science – A2 – Use creativity and insight to recognize and describe patterns in natural phenomena.
    • I. Nature of Science – A4 – Rely on reproducible observations of empirical evidence when constructing, analyzing, and evaluating explanations of natural events and processes.
    • I. Nature of Science – E1 – Use several modes of expression to describe or characterize natural patterns and phenomena. These modes of expression include narrative, numerical, graphical, pictorial, symbolic, and kinesthetic.
    • I. Nature of Science – E2 – Use essential vocabulary of the discipline being studied.
    • II. Foundation Skills: Scientific Applications of Mathematics – A7 – Use calculators, spreadsheets, computers, etc. in data analysis.
AP.3H Communicate valid conclusions supported by the data through methods such as lab reports, labeled drawings, graphic organizers, journals, summaries, oral reports, and technology-based reports.

Communicate

VALID CONCLUSIONS SUPPORTED BY DATA THROUGH METHODS

Including, but not limited to:

  • Conclusion – an explanation of results based on data collected
  • Communicate valid conclusions in oral, written, and graphic forms
    • Use essential vocabulary of the discipline to communicate conclusions
    • Use appropriate writing practices consistent with scientific writing
    • Present scientific information in appropriate formats for various audiences
  • Draw conclusions based only on the data from the investigation
  • Demonstrate various methods for communicating conclusions
    • Lab reports
    • Labeled drawings
    • Diagrams
    • Graphic organizers (including charts and tables)
    • Graphs
    • Journals (science notebooks)
    • Summaries
    • Oral reports
    • Technology-based reports

Note(s):

  • TxCCRS:
    • IV. Nature of Science: Scientific Ways of Learning and Thinking – E1 – Use several modes of expression to describe or characterize natural patterns and phenomena. These modes of expression include narrative, numerical, graphical, pictorial, symbolic, and kinesthetic.
AP.4 The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:
AP.4B Communicate and apply scientific information extracted from various sources such as accredited scientific journals, institutions of higher learning, current events, news reports, published journal articles, and marketing materials.

Extract, Communicate, Apply

SCIENTIFIC INFORMATION FROM VARIOUS SOURCES

Including, but not limited to:

  • Contrast of scientific information and non-scientific information
    • Scientific information refers to data gained through the scientific method using a sequence of logical steps to investigate, acquire, or expand our understanding. Scientific information can be reproduced and has been demonstrated to be consistent.
    • Non-scientific information refers to knowledge and truths about the world acquired by using techniques that do not follow the scientific method, such as traditions, personal experience, and intuition
  • Extract scientific information from various sources
    • Possible examples may include:
      • Accredited scientific journal
      • Institution of higher learning
      • Current event
      • News report
      • Published journal articles
      • Marketing material
  • Communicate scientific information
    • Possible examples may include:
      • Video presenting findings from a scientific journal or published journal article to the public
  • Apply scientific information
    • Possible examples may include:
      • Scientific compared to non-scientific informational analysis of a situation 
      • Determination of necessary scientific information when making a decision
Note(s):
  • TxCCRS:
    • I. Nature of Science: Scientific Ways of Learning and Thinking – D1 – Demonstrate literacy in computer use.
    • III. Foundation Skills: Scientific Applications of Communication – D1 – Use search engines, databases, and other digital electronic tools effectively to locate information.
    • III. Foundation Skills: Scientific Applications of Communication – D2 – Evaluate quality, accuracy, completeness, reliability, and currency of information from any source.
    • IV. Nature of Science: Scientific Ways of Learning and Thinking – E1 – Use several modes of expression to describe or characterize natural patterns and phenomena. These modes of expression include narrative, numerical, graphical, pictorial, symbolic, and kinesthetic.
  • Project 2061: By the end of the 12th grades, students should know that:
    • The dissemination of scientific information is crucial to its progress. Some scientists present their findings and theories in papers that are delivered at meetings or published in scientific journals. Those papers enable scientists to inform others about their work, to expose their ideas to criticism by other scientists, and, of course, to stay abreast of scientific developments around the world. 1C/H12** (SFAA)
    • Scientists can bring information, insights, and analytical skills to bear on matters of public concern. Acting in their areas of expertise, scientists can help people understand the likely causes of events and estimate their possible effects. 1C/H6ab 
AP.4D Evaluate the impact of scientific research on society and the environment.

Evaluate

THE IMPACT OF SCIENTIFIC RESEARCH ON SOCIETY

Including, but not limited to:

  • Importance of scientific articles in gaining an understanding of the impact of research
  • Recognition of the connection of scientific discoveries to technological innovations
  • Impact of commonly held ethical beliefs on scientific research and vice versa
  • Understanding how scientific discoveries have impacted / changed commonly held beliefs
  • Possible research topics may include:
    • Development of preventive, diagnostic, or treatment products

Evaluate

THE IMPACT OF SCIENTIFIC RESEARCH ON THE ENVIRONMENT

Including, but not limited to:

  • Understanding of the environmental impact of research
  • Description of how scientific research has led to scientific discoveries
  • Analysis of scientific discoveries that have impacted the environment positively and negatively
Note(s):
  • TxCCRS:
    • I. Nature of Science – A4 – Rely on reproducible observations of empirical evidence when constructing, analyzing, and evaluating explanations of natural events and processes.
  • Project 2061: By the 12th grade, students should understand:
    • Because science is a human activity, what is valued in society influences what is valued in science. 1C/H10** (SFAA)
    • The human ability to influence the course of history comes from its capacity for generating knowledge and developing new technologies—and for communicating ideas to others. 3C/H6** (BSL)
AP.5 The student evaluates the energy needs of the human body and the processes through which these needs are fulfilled. The student is expected to:
AP.5B Evaluate the modes, including the structure and function of the digestive system, by which energy is processed and stored within the body.

Evaluate

THE MODES BY WHICH ENERGY IS PROCESSED AND STORED WITHIN THE BODY

Including, but not limited to:

  • Chemical processes involved in the processing and / or storage of biomolecules within the body
    • Carbohydrates
      • Glycogenesis
      • Glycogenolysis
      • Gluconeogenesis
    • Lipids
      • Lipolysis
      • Lipogenesis
    • Proteins
      • Proteolysis
  • Digestive system functions involved in the processing and / or storage of energy within the body
    • Mechanical digestion
      • Segmentation
    • Chemical digestion
      • Salivary, gastric, pancreatic, and intestinal enzymes
    • Ingestion
    • Propulsion
      • Peristalsis
    • Absorption
      • Monosaccharides
      • Fatty acids
      • Glycerols
      • Amino acids
    • Defecation
  • Digestive system structures – role of each structure in the processing and / or storage of energy within the body
    • Alimentary canal
      • Mouth – ingestion, propulsion, mechanical digestion, chemical digestion
      • Pharynx – propulsion
      • Esophagus – propulsion
      • Stomach – mechanical digestion, chemical digestion
      • Small intestine – propulsion, mechanical digestion, chemical digestion, absorption
      • Large intestine or colon – propulsion, chemical digestion, absorption
      • Anal canal – propulsion, defecation
    • Accessory organs – chemical digestion
      • Salivary glands – production of amylase to begin chemical digestion of carbohydrates
      • Liver – production of bile
      • Pancreas – production of pancreatic enzymes
      • Gallbladder – storage of bile

 

Note(s):
  • TxCCRS:
    • VI. Biology – B5 – Know how organisms respond to presence or absence of oxygen, including mechanisms of fermentation.
  • Project 2061: By the 12th grade, students should know that:
    • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction. 6C/H6** (SFAA)
AP.5C Analyze the effects of energy deficiencies in malabsorption disorders as they relate to body systems such as Crohn's disease and cystic fibrosis.

Analyze

THE EFFECTS OF ENERGY DEFICIENCIES IN MALABSORPTION DISORDERS

Including, but not limited to:

  • Energy deficiency
    • Primary malnutrition – condition from energy deficit due to diet alone
      • Starvation
      • Marasmus
      • Kwashiorkor
    • Malabsorption (secondary malnutrition) – condition in which an individual’s characteristics make a normally adequate diet insufficient
      • Causative factors
        • Damage to the intestines due to disease, infection, inflammation, trauma, surgeries, radiation therapy, or certain drug therapies
      • Effects of malabsorption
        • Symptoms differ dependent on what factor is deficient
      • Possible malabsorption examples may include:
        • Cystic fibrosis
        • Lactose intolerance
        • Inflammatory bowel disease: ulcerative colitis, Crohn’s disease
        • Colorectal cancer
        • Celiac disease
        • Chronic pancreatitis
        • Biliary atresia
Note(s):
  • Project 2061: By the 12th grade, students should know that:
    • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction. 6C/H6** (SFAA)
AP.5D Analyze the effects of energy excess in disorders as they relate to body systems such as cardiovascular, endocrine, muscular, skeletal, and pulmonary.

Analyze

THE EFFECTS OF ENERGY EXCESS IN DISORDERS AS THEY RELATE TO BODY SYSTEMS

Including, but not limited to:

  • Energy excess
    • Primary malnutrition – condition from energy excess due to diet alone
      • Overeating
    • Malabsorption (secondary malnutrition) – condition in which an individual’s characteristics make a normally adequate diet excessive
      • Causative factors
        • Overeating, autoimmune disorders, endocrine system disorders
      • Effects of malabsorption
        • Symptoms may differ dependent on what factor is excessive
        • Food converted to fat leading to obesity
      • Possible energy excess examples may include:
        • Cardiovascular system
          • Atherosclerosis
          • High blood pressure
          • Myocardial infarction
        • Endocrine system
          • Development of Type 2 diabetes
        • Muscular and skeletal systems
          • Bone fractures
          • Increased susceptibility to joint injuries
        • Respiratory (pulmonary) system
          • Obstructive sleep apnea
          • Obesity-hypoventilation syndrome
Note(s):
  • Project 2061: By the 12th grade, students should know that:
    • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction. 6C/H6** (SFAA)
AP.11 The student investigates the structure and function of the human body. The student is expected to:
AP.11A

Analyze the relationships between the anatomical structures and physiological functions of systems, including the integumentary, nervous, skeletal, muscular, cardiovascular, respiratory, digestive, urinary, immune, endocrine, and reproductive systems.

Note: This standard spans most of the units of this course. In this unit, students are expected to analyze the structure and function of the digestive system.

Analyze

THE RELATIONSHIPS BETWEEN THE ANATOMICAL STRUCTURES AND PHYSIOLOGICAL FUNCTIONS OF SYSTEMS

Including, but not limited to:

  • Digestive system
    • Functions
      • Mechanical digestion
      • Chemical digestion
      • Ingestion
      • Propulsion
      • Absorption
      • Defecation
    • Structures
      • Alimentary canal
        • Mouth
        • Pharynx
          • Nasopharynx
          • Oropharynx
          • Laryngopharynx
        • Esophagus
        • Stomach
        • Small intestine
          • Duodenum
          • Jejunum
          • Ileum
        • Large intestine or colon
          • Ascending colon
          • Transverse colon
          • Descending colon
          • Sigmoid colon
          • Importance of fiber in maintaining colon health and function
          • Role of gut microbiome in human health and disease
        • Rectum
        • Anal canal
        • Anus
      • Accessory organs and their secretions
        • Salivary glands
        • Liver
          • Function of liver in maintaining blood glucose homeostasis
        • Pancreas
        • Gallbladder
Note(s):
  • TxCCRS:
    • III. Foundation Skills: Scientific Application of Communication – B3 – Recognize scientific and technical vocabulary in the field of study and use this vocabulary to enhance clarity of communication.
    • VI. Biology – F1 – Describe, compare, and contrast structures and processes that allow gas exchange, nutrient uptake and processing, waste excretion, nervous and hormonal regulation, and reproduction in plants, animals, and fungi; give examples of each.
  • Project 2061: By the end of the 12th grade, students should know that:
    • The immune system functions to protect against microscopic organisms and foreign substances that enter from outside the body and against some cancer cells that arise within. 6C/H1*
    • Communication between cells is required to coordinate their diverse activities. Cells may secrete molecules that spread locally to nearby cells or that are carried in the bloodstream to cells throughout the body. Nerve cells transmit electrochemical signals that carry information much more rapidly than is possible by diffusion or blood flow. 6C/H3*
    • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction. 6C/H6** (SFAA)
The English Language Proficiency Standards (ELPS), as required by 19 Texas Administrative Code, Chapter 74, Subchapter A, §74.4, outline English language proficiency level descriptors and student expectations for English language learners (ELLs). School districts are required to implement ELPS as an integral part of each subject in the required curriculum.

School districts shall provide instruction in the knowledge and skills of the foundation and enrichment curriculum in a manner that is linguistically accommodated commensurate with the student’s levels of English language proficiency to ensure that the student learns the knowledge and skills in the required curriculum.


School districts shall provide content-based instruction including the cross-curricular second language acquisition essential knowledge and skills in subsection (c) of the ELPS in a manner that is linguistically accommodated to help the student acquire English language proficiency.

http://ritter.tea.state.tx.us/rules/tac/chapter074/ch074a.html#74.4 


Choose appropriate ELPS to support instruction.

ELPS# Subsection C: Cross-curricular second language acquisition essential knowledge and skills.
Click here to collapse or expand this section.
ELPS.c.1 The ELL uses language learning strategies to develop an awareness of his or her own learning processes in all content areas. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. The student is expected to:
ELPS.c.1A use prior knowledge and experiences to understand meanings in English
ELPS.c.1B monitor oral and written language production and employ self-corrective techniques or other resources
ELPS.c.1C use strategic learning techniques such as concept mapping, drawing, memorizing, comparing, contrasting, and reviewing to acquire basic and grade-level vocabulary
ELPS.c.1D speak using learning strategies such as requesting assistance, employing non-verbal cues, and using synonyms and circumlocution (conveying ideas by defining or describing when exact English words are not known)
ELPS.c.1E internalize new basic and academic language by using and reusing it in meaningful ways in speaking and writing activities that build concept and language attainment
ELPS.c.1F use accessible language and learn new and essential language in the process
ELPS.c.1G demonstrate an increasing ability to distinguish between formal and informal English and an increasing knowledge of when to use each one commensurate with grade-level learning expectations
ELPS.c.1H develop and expand repertoire of learning strategies such as reasoning inductively or deductively, looking for patterns in language, and analyzing sayings and expressions commensurate with grade-level learning expectations.
ELPS.c.2 The ELL listens to a variety of speakers including teachers, peers, and electronic media to gain an increasing level of comprehension of newly acquired language in all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in listening. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. The student is expected to:
ELPS.c.2A distinguish sounds and intonation patterns of English with increasing ease
ELPS.c.2B recognize elements of the English sound system in newly acquired vocabulary such as long and short vowels, silent letters, and consonant clusters
ELPS.c.2C learn new language structures, expressions, and basic and academic vocabulary heard during classroom instruction and interactions
ELPS.c.2D monitor understanding of spoken language during classroom instruction and interactions and seek clarification as needed
ELPS.c.2E use visual, contextual, and linguistic support to enhance and confirm understanding of increasingly complex and elaborated spoken language
ELPS.c.2F listen to and derive meaning from a variety of media such as audio tape, video, DVD, and CD ROM to build and reinforce concept and language attainment
ELPS.c.2G understand the general meaning, main points, and important details of spoken language ranging from situations in which topics, language, and contexts are familiar to unfamiliar
ELPS.c.2H understand implicit ideas and information in increasingly complex spoken language commensurate with grade-level learning expectations
ELPS.c.2I demonstrate listening comprehension of increasingly complex spoken English by following directions, retelling or summarizing spoken messages, responding to questions and requests, collaborating with peers, and taking notes commensurate with content and grade-level needs.
ELPS.c.3 The ELL speaks in a variety of modes for a variety of purposes with an awareness of different language registers (formal/informal) using vocabulary with increasing fluency and accuracy in language arts and all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in speaking. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. The student is expected to:
ELPS.c.3A practice producing sounds of newly acquired vocabulary such as long and short vowels, silent letters, and consonant clusters to pronounce English words in a manner that is increasingly comprehensible
ELPS.c.3B expand and internalize initial English vocabulary by learning and using high-frequency English words necessary for identifying and describing people, places, and objects, by retelling simple stories and basic information represented or supported by pictures, and by learning and using routine language needed for classroom communication
ELPS.c.3C speak using a variety of grammatical structures, sentence lengths, sentence types, and connecting words with increasing accuracy and ease as more English is acquired
ELPS.c.3D speak using grade-level content area vocabulary in context to internalize new English words and build academic language proficiency
ELPS.c.3E share information in cooperative learning interactions
ELPS.c.3F ask and give information ranging from using a very limited bank of high-frequency, high-need, concrete vocabulary, including key words and expressions needed for basic communication in academic and social contexts, to using abstract and content-based vocabulary during extended speaking assignments
ELPS.c.3G express opinions, ideas, and feelings ranging from communicating single words and short phrases to participating in extended discussions on a variety of social and grade-appropriate academic topics
ELPS.c.3H narrate, describe, and explain with increasing specificity and detail as more English is acquired
ELPS.c.3I adapt spoken language appropriately for formal and informal purposes
ELPS.c.3J respond orally to information presented in a wide variety of print, electronic, audio, and visual media to build and reinforce concept and language attainment.
ELPS.c.4 The ELL reads a variety of texts for a variety of purposes with an increasing level of comprehension in all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in reading. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. For Kindergarten and Grade 1, certain of these student expectations apply to text read aloud for students not yet at the stage of decoding written text. The student is expected to:
ELPS.c.4A learn relationships between sounds and letters of the English language and decode (sound out) words using a combination of skills such as recognizing sound-letter relationships and identifying cognates, affixes, roots, and base words
ELPS.c.4B recognize directionality of English reading such as left to right and top to bottom
ELPS.c.4C develop basic sight vocabulary, derive meaning of environmental print, and comprehend English vocabulary and language structures used routinely in written classroom materials
ELPS.c.4D use prereading supports such as graphic organizers, illustrations, and pretaught topic-related vocabulary and other prereading activities to enhance comprehension of written text
ELPS.c.4E read linguistically accommodated content area material with a decreasing need for linguistic accommodations as more English is learned
ELPS.c.4F use visual and contextual support and support from peers and teachers to read grade-appropriate content area text, enhance and confirm understanding, and develop vocabulary, grasp of language structures, and background knowledge needed to comprehend increasingly challenging language
ELPS.c.4G demonstrate comprehension of increasingly complex English by participating in shared reading, retelling or summarizing material, responding to questions, and taking notes commensurate with content area and grade level needs
ELPS.c.4H read silently with increasing ease and comprehension for longer periods
ELPS.c.4I demonstrate English comprehension and expand reading skills by employing basic reading skills such as demonstrating understanding of supporting ideas and details in text and graphic sources, summarizing text, and distinguishing main ideas from details commensurate with content area needs
ELPS.c.4J demonstrate English comprehension and expand reading skills by employing inferential skills such as predicting, making connections between ideas, drawing inferences and conclusions from text and graphic sources, and finding supporting text evidence commensurate with content area needs
ELPS.c.4K demonstrate English comprehension and expand reading skills by employing analytical skills such as evaluating written information and performing critical analyses commensurate with content area and grade-level needs.
ELPS.c.5 The ELL writes in a variety of forms with increasing accuracy to effectively address a specific purpose and audience in all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in writing. In order for the ELL to meet grade-level learning expectations across foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. For Kindergarten and Grade 1, certain of these student expectations do not apply until the student has reached the stage of generating original written text using a standard writing system. The student is expected to:
ELPS.c.5A learn relationships between sounds and letters of the English language to represent sounds when writing in English
ELPS.c.5B write using newly acquired basic vocabulary and content-based grade-level vocabulary
ELPS.c.5C spell familiar English words with increasing accuracy, and employ English spelling patterns and rules with increasing accuracy as more English is acquired
ELPS.c.5D edit writing for standard grammar and usage, including subject-verb agreement, pronoun agreement, and appropriate verb tenses commensurate with grade-level expectations as more English is acquired
ELPS.c.5E employ increasingly complex grammatical structures in content area writing commensurate with grade-level expectations, such as:
ELPS.c.5F write using a variety of grade-appropriate sentence lengths, patterns, and connecting words to combine phrases, clauses, and sentences in increasingly accurate ways as more English is acquired
ELPS.c.5G narrate, describe, and explain with increasing specificity and detail to fulfill content area writing needs as more English is acquired.
Last Updated 01/24/2019
Loading
Data is Loading...