Hello, Guest!

Instructional Focus Document
Anatomy and Physiology
TITLE : Unit 10: Endocrine System SUGGESTED DURATION : 4 days

Unit Overview

During this Unit

This unit bundles student expectations that address the structure and function of the endocrine system. Students analyze the various methods in which hormones regulate metabolic activities. Students evaluate the use of feedback mechanisms in the relationship between the nervous and endocrine systems during the body’s response to stress.

 

Streamlining Note

In Biology TEKS B.4A, students now compare and contrast scientific explanations for cellular complexity in addition to previous expectations. Students no longer compare the structure of biomolecules in Biology TEKS B.9A but continue to compare the functions. The former Biology TEKS B.11A, describe the role of internal feedback mechanisms, was removed during the streamlining process implemented in 2018-2019. Students continue to understand the concept of process regulation in animals in the context of TEKS B.10A and homeostasis at the cellular level is addressed in TEKS B.4B.

 

Prior Content Connections

  • Biology
    • B.4 – The student knows that cells are the basic structures of all living things with specialized parts that perform specific functions and that viruses are different from cells. The student is expected to:
      • B.4A – Compare and contrast prokaryotic and eukaryotic cells, including their complexity, and compare and contrast scientific explanations for cellular complexity.
      • B.4B – Investigate and explain cellular processes, including homeostasis and transport of molecules.
    • B.5 – The student knows how an organism grows and the importance of cell differentiation.
    • B.9 – The student knows the significance of various molecules involved in metabolic processes and energy conversions that occur in living organisms. The student is expected to:
      • B.9A – Compare the functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids.
    • B.10 – The student knows that biological systems are composed of multiple levels. The student is expected to:
      • B.10A – Describe the interactions that occur among systems that perform the functions of regulation, nutrient absorption, reproduction, and defense from injury or illness in animals.
      • B.10C – Analyze the levels of organization in biological systems and relate the levels to each other and to the whole system.
    • B.11 – The student knows that biological systems work to achieve and maintain balance.                                                               

 

After this Unit

Students will use the information gained in this unit to understand how the communication and control functions of the endocrine system regulates the actions of other body systems.

 

According to Research

“By the end of the 12th grade, students should know that:

  • Communication between cells is required to coordinate their diverse activities. Cells may secrete molecules that spread locally to nearby cells or that are carried in the bloodstream to cells throughout the body. Nerve cells transmit electrochemical signals that carry information much more rapidly than is possible by diffusion or blood flow.
  • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction.
  • There are different traditions in science about what is investigated and how, but they all share a commitment to the use of logical arguments based on empirical evidence.
  • The dissemination of scientific information is crucial to its progress. Some scientists present their findings and theories in papers that are delivered at meetings or published in scientific journals. Those papers enable scientists to inform others about their work, to expose their ideas to criticism by other scientists, and, of course, to stay abreast of scientific developments around the world.
  • Scientists can bring information, insights, and analytical skills to bear on matters of public concern. Acting in their areas of expertise, scientists can help people understand the likely causes of events and estimate their possible effects.
  • Because science is a human activity, what is valued in society influences what is valued in science.
  • The human ability to influence the course of history comes from its capacity for generating knowledge and developing new technologies—and for communicating ideas to others.”

American Association for the Advancement of Science. (2009). Benchmarks on-line. Retrieved from http://www.project2061.org/publications/bsl/online.

 

  • TxCCRS:
    • I. Nature of Science – A1 – Utilize skepticism, logic, and professional ethics in science.
    • I. Nature of Science – A4 – Rely on reproducible observations of empirical evidence when constructing, analyzing, and evaluating explanations of natural events and processes.
    • III. Foundation Skills: Scientific Application of Communication – B3 – Recognize scientific and technical vocabulary in the field of study and use this vocabulary to enhance clarity of communication.
    • III. Foundation Skills: Scientific Applications of Communication – D2 – Evaluate quality, accuracy, completeness, reliability, and currency of information from any source.
    • VI. Biology – F1 – Describe, compare, and contrast structures and processes that allow gas exchange, nutrient uptake and processing, waste excretion, nervous and hormonal regulation, and reproduction in plants, animals, and fungi; give examples of each.
    • IV. Nature of Science: Scientific Ways of Learning and Thinking – E1 – Use several modes of expression to describe or characterize natural patterns and phenomena. These modes of expression include narrative, numerical, graphical, pictorial, symbolic, and kinesthetic.

Texas Higher Education Coordinating Board. (2009). Texas College and Career Readiness Standards. Retrieved from http://www.thecb.state.tx.us.


Scientists investigate natural phenomena in order to understand and explain each phenomenon in terms of systems.

  • What is the value of knowing and understanding natural phenomena?
  • How are the properties of systems and their components related to their classification?
  • How are the components, processes, and / or patterns of systems interrelated?

 

Scientists analyze, evaluate, and critique each other’s work using principles of scientific investigations in order to build on one another’s ideas through new investigations.

  • How can we know what to believe about a scientific claim?
  • In what ways have scientific explanations impacted scientific thought and society over time?
  • What is the value of scientific literacy?
Unit Understandings
and Questions
Overarching Concepts
and Unit Concepts
Performance Assessment(s)

The endocrine system is responsible for cellular communication and process regulation through the release of hormones directly into the bloodstream.

  • In what ways do hormones affect the metabolic processes of the human body?
  • Why does the classification of hormone affect the pattern of receptor action?
  • How is hormone specificity achieved?

Systems

  • Endocrine system

 

Classifications

  • Amino acid derivatives
  • Peptides
  • Lipid derivatives

 

Properties

  • Lipid soluble
  • Water soluble

 

Patterns

  • Intracellular receptor action
  • Extracellular receptor action

 

Models

  • Types of hormonal receptors
Assessment information provided within the TEKS Resource System are examples that may, or may not, be used by your child’s teacher. In accordance with section 26.006 (2) of the Texas Education Code, "A parent is entitled to review each test administered to the parent’s child after the test is administered." For more information regarding assessments administered to your child, please visit with your child’s teacher.

The endocrine system is responsible for cellular communication and process regulation through the release of hormones directly into the bloodstream.

  • In what ways do hormones affect the metabolic processes of the human body?
  • How has nuclear medicine been useful in diagnosing and treating certain types of endocrine disorders?

 

The body’s response to stressors regulates the release of hormones.

  • What role does the nervous system have in the response of the endocrine system to stressors?
  • What are the relationships between negative feedback mechanisms, up-regulation and down-regulation in maintaining hormonal homeostasis?
  • In what ways does the body react during General Adaptation Response (GAR)?

Systems

  • Endocrine system
  • Nervous system

 

Models

  • Types of hormonal receptors

 

Constancy

  • Response to stress

 

Change

  • Up-regulation
  • Down-regulation
Assessment information provided within the TEKS Resource System are examples that may, or may not, be used by your child’s teacher. In accordance with section 26.006 (2) of the Texas Education Code, "A parent is entitled to review each test administered to the parent’s child after the test is administered." For more information regarding assessments administered to your child, please visit with your child’s teacher.

MISCONCEPTIONS / UNDERDEVELOPED CONCEPTS

Misconceptions:

  • Student may think that hormones are only involved in the regulation of the reproductive system, rather than understanding their role in regulating processes within all body systems.

 

Underdeveloped Concepts:

  • Students may have a limited understanding of a hormone’s action at the cellular level.

Unit Vocabulary

Key Content Vocabulary:

  • Endocrine gland – organ that secretes its product, hormone, directly into the blood, rather than through a duct
  • First messenger – hormones that function outside the cell in the transmission of biological information
  • General adaptation syndrome – three-stage process that describes the physiological changes the body goes through when under stress
  • Hormone – chemical substance produced in the body that controls and regulates the activity of certain cells or organs
  • Lipid soluble – hormones that bind to receptors on the inside of the target cell
  • Second messenger – molecules that function inside cell to transmit signals from a receptor to an internal target
  • Stress – reaction of the body to a challenge or demand
  • Stressor – physiological, psychological, or social force that puts real or perceived demands on the body
  • Target cell – cell that contain membrane receptors for a specific hormone
  • Water soluble – hormones that bind to receptors on the surface of the target cell

 

Related Vocabulary:

  • Adrenal gland
  • cAMP
  • Down-regulation
  • G-protein
  • Hypothalamus
  • Ovaries
  • Pancreas
  • Parathyroid gland
  • Pineal gland
  • Pituitary gland
  • Receptor
  • Testes
  • Thymus gland
  • Thyroid gland
  • Up-regulation
Unit Assessment Items System Resources Other Resources

Show this message:

Unit Assessment Items that have been published by your district may be accessed through Search All Components in the District Resources tab. Assessment items may also be found using the Assessment Creator if your district has granted access to that tool.

Show this message:

System Resources may be accessed through Search All Components in the District Resources Tab.

State:

Texas Education Agency – Texas Safety Standards

http://www.tea.state.tx.us/index2.aspx?id=5483 (look under Documents)


TEKS# SE# Unit Level Taught Directly TEKS Unit Level Specificity
 

Legend:

  • Knowledge and Skills Statements (TEKS) identified by TEA are in italicized, bolded, black text.
  • Student Expectations (TEKS) identified by TEA are in bolded, black text.
  • Portions of the Student Expectations (TEKS) that are not included in this unit but are taught in previous or future units are indicated by a strike-through.

Legend:

  • Supporting information / clarifications (specificity) written by TEKS Resource System are in blue text.
  • Unit-specific clarifications are in italicized, blue text.
  • Information from Texas Education Agency (TEA), Texas College and Career Readiness Standards (TxCCRS), and American Association for the Advancement of Science (AAAS) Project 2061 is labeled.
  • A Partial Specificity label indicates that a portion of the specificity not aligned to this unit has been removed.
AP.4 The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:
AP.4A

In all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking.

Analyze, Evaluate, Critique

SCIENTIFIC EXPLANATIONS

Including, but not limited to:

  • Analyze – to study or determine the nature and relationship of the parts of something
  • Evaluate – to determine the significance, worth, or condition of, usually by careful appraisal and study
  • Critique – a careful judgment to provide an opinion about the positive and negative aspects of something
  • Assess examples of scientific explanations and their usefulness to the field of medicine
    • Possible examples may include:
      • Analyze the use of herbal supplements in disease prevention and treatment
      • Evaluate the use of radiation in medical diagnostics and treatment

Use

EMPIRICAL EVIDENCE, LOGICAL REASONING, AND EXPERIMENTAL TESTING

Including, but not limited to:

  • Empirical evidence – information acquired by observation or experimentation
  • Logical reasoning – the drawing of inferences or conclusions through the use of reason
    • Possible examples may include:
      • Analyze a patient's medical history or case study
      • Analyze a patient's lab results
  • Experimental testing – people or things are randomly assigned to groups; treatment is applied to one of the groups, while the other group does not receive treatment
    • Possible examples may include:
      • Patient medical history or case study analysis
Note(s):
  • TxCCRS:
    • I. Nature of Science – A1 – Utilize skepticism, logic, and professional ethics in science.
    • I. Nature of Science – A4 – Rely on reproducible observations of empirical evidence when constructing, analyzing, and evaluating explanations of natural events and processes.
  • Project 2061: By the end of the 12th grade, students should know that:
    • There are different traditions in science about what is investigated and how, but they all share a commitment to the use of logical arguments based on empirical evidence. 1B/H4*
AP.4B

Communicate and apply scientific information extracted from various sources such as accredited scientific journals, institutions of higher learning, current events, news reports, published journal articles, and marketing materials.

Extract, Communicate, Apply

SCIENTIFIC INFORMATION FROM VARIOUS SOURCES

Including, but not limited to:

  • Contrast of scientific information and non-scientific information
    • Scientific information refers to data gained through the scientific method using a sequence of logical steps to investigate, acquire, or expand our understanding. Scientific information can be reproduced and has been demonstrated to be consistent.
    • Non-scientific information refers to knowledge and truths about the world acquired by using techniques that do not follow the scientific method, such as traditions, personal experience, and intuition
  • Extract scientific information from various sources
    • Possible examples may include:
      • Accredited scientific journal
      • Institution of higher learning
      • Published journal articles
  • Communicate scientific information
    • Possible examples may include:
      • Video presenting findings from a scientific journal or published journal article to the public
  • Apply scientific information
    • Possible examples may include:
      • Scientific compared to non-scientific informational analysis of a situation 
      • Determination of necessary scientific information when making a decision
        • A patient being able to give informed consent
        • Better medication choice to take under certain conditions
Note(s):
  • TxCCRS:
    • I. Nature of Science: Scientific Ways of Learning and Thinking – D1 – Demonstrate literacy in computer use.
    • III. Foundation Skills: Scientific Applications of Communication – D1 – Use search engines, databases, and other digital electronic tools effectively to locate information.
    • III. Foundation Skills: Scientific Applications of Communication – D2 – Evaluate quality, accuracy, completeness, reliability, and currency of information from any source.
    • IV. Nature of Science: Scientific Ways of Learning and Thinking – E1 – Use several modes of expression to describe or characterize natural patterns and phenomena. These modes of expression include narrative, numerical, graphical, pictorial, symbolic, and kinesthetic.
  • Project 2061: By the end of the 12th grades, students should know that:
    • The dissemination of scientific information is crucial to its progress. Some scientists present their findings and theories in papers that are delivered at meetings or published in scientific journals. Those papers enable scientists to inform others about their work, to expose their ideas to criticism by other scientists, and, of course, to stay abreast of scientific developments around the world. 1C/H12** (SFAA)
    • Scientists can bring information, insights, and analytical skills to bear on matters of public concern. Acting in their areas of expertise, scientists can help people understand the likely causes of events and estimate their possible effects. 1C/H6ab 
AP.4D Evaluate the impact of scientific research on society and the environment.

Evaluate

THE IMPACT OF SCIENTIFIC RESEARCH ON SOCIETY

Including, but not limited to:

  • Importance of scientific articles in gaining an understanding of the impact of research
  • Recognition of the connection of scientific discoveries to technological innovations
  • Understanding how scientific discoveries have impacted / changed commonly held beliefs
    • Possible research topics may include:
      • Development of preventive, diagnostic, or treatment products

Evaluate

THE IMPACT OF SCIENTIFIC RESEARCH ON THE ENVIRONMENT

Including, but not limited to:

  • Understanding of the environmental impact of research
  • Recognition of how scientific discoveries are connected to technological innovations
  • Description of how scientific research has led to scientific discoveries
  • Analysis of scientific discoveries that have impacted the environment positively and negatively
    • Possible examples may include:
      • Uses of nuclear medicine
Note(s):
  • TxCCRS:
    • I. Nature of Science – A4 – Rely on reproducible observations of empirical evidence when constructing, analyzing, and evaluating explanations of natural events and processes.
  • Project 2061: By the 12th grade, students should understand:
    • Because science is a human activity, what is valued in society influences what is valued in science. 1C/H10** (SFAA)
    • The human ability to influence the course of history comes from its capacity for generating knowledge and developing new technologies—and for communicating ideas to others. 3C/H6** (BSL)
AP.11 The student investigates the structure and function of the human body. The student is expected to:
AP.11A

Analyze the relationships between the anatomical structures and physiological functions of systems, including the integumentary, nervous, skeletal, muscular, cardiovascular, respiratory, digestive, urinary, immune, endocrine, and reproductive systems.

Analyze

THE RELATIONSHIPS BETWEEN THE ANATOMICAL STRUCTURES AND PHYSIOLOGICAL FUNCTIONS OF SYSTEMS

Including, but not limited to:

  • Endocrine system
    • Functions
      • Regulate metabolic activities of body structures
      • Provide cell to cell communication through the use of hormonal feedback mechanisms
    • Control of hormone secretions
      • Negative feedback mechanisms
      • Neural control
    • Categories of hormones
      • Steroidal / lipid soluble
      • Nonsteroidal / water soluble
    • Structures
      • Hypothalamus
      • Pituitary gland
      • Thyroid gland
      • Parathyroid gland
      • Adrenal gland
      • Pancreas
      • Pineal gland
      • Thymus gland
      • Ovaries
      • Testes
      • Examples of hormones secreted and actions regulated
    • Hormonal responses to stress

Note(s):

  • TxCCRS:
    • III. Foundation Skills: Scientific Application of Communication – B3 – Recognize scientific and technical vocabulary in the field of study and use this vocabulary to enhance clarity of communication.
    • VI. Biology – F1 – Describe, compare, and contrast structures and processes that allow gas exchange, nutrient uptake and processing, waste excretion, nervous and hormonal regulation, and reproduction in plants, animals, and fungi; give examples of each.
  • Project 2061: By the end of the 12th grade, students should know that:
    • Communication between cells is required to coordinate their diverse activities. Cells may secrete molecules that spread locally to nearby cells or that are carried in the bloodstream to cells throughout the body. Nerve cells transmit electrochemical signals that carry information much more rapidly than is possible by diffusion or blood flow. 6C/H3*
    • The human body is a complex system of cells, most of which are grouped into organ systems that have specialized functions. These systems can best be understood in terms of the essential functions they serve for the organism: deriving energy from food, protection against injury, internal coordination, and reproduction. 6C/H6** (SFAA)
The English Language Proficiency Standards (ELPS), as required by 19 Texas Administrative Code, Chapter 74, Subchapter A, §74.4, outline English language proficiency level descriptors and student expectations for English language learners (ELLs). School districts are required to implement ELPS as an integral part of each subject in the required curriculum.

School districts shall provide instruction in the knowledge and skills of the foundation and enrichment curriculum in a manner that is linguistically accommodated commensurate with the student’s levels of English language proficiency to ensure that the student learns the knowledge and skills in the required curriculum.


School districts shall provide content-based instruction including the cross-curricular second language acquisition essential knowledge and skills in subsection (c) of the ELPS in a manner that is linguistically accommodated to help the student acquire English language proficiency.

http://ritter.tea.state.tx.us/rules/tac/chapter074/ch074a.html#74.4 


Choose appropriate ELPS to support instruction.

ELPS# Subsection C: Cross-curricular second language acquisition essential knowledge and skills.
Click here to collapse or expand this section.
ELPS.c.1 The ELL uses language learning strategies to develop an awareness of his or her own learning processes in all content areas. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. The student is expected to:
ELPS.c.1A use prior knowledge and experiences to understand meanings in English
ELPS.c.1B monitor oral and written language production and employ self-corrective techniques or other resources
ELPS.c.1C use strategic learning techniques such as concept mapping, drawing, memorizing, comparing, contrasting, and reviewing to acquire basic and grade-level vocabulary
ELPS.c.1D speak using learning strategies such as requesting assistance, employing non-verbal cues, and using synonyms and circumlocution (conveying ideas by defining or describing when exact English words are not known)
ELPS.c.1E internalize new basic and academic language by using and reusing it in meaningful ways in speaking and writing activities that build concept and language attainment
ELPS.c.1F use accessible language and learn new and essential language in the process
ELPS.c.1G demonstrate an increasing ability to distinguish between formal and informal English and an increasing knowledge of when to use each one commensurate with grade-level learning expectations
ELPS.c.1H develop and expand repertoire of learning strategies such as reasoning inductively or deductively, looking for patterns in language, and analyzing sayings and expressions commensurate with grade-level learning expectations.
ELPS.c.2 The ELL listens to a variety of speakers including teachers, peers, and electronic media to gain an increasing level of comprehension of newly acquired language in all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in listening. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. The student is expected to:
ELPS.c.2A distinguish sounds and intonation patterns of English with increasing ease
ELPS.c.2B recognize elements of the English sound system in newly acquired vocabulary such as long and short vowels, silent letters, and consonant clusters
ELPS.c.2C learn new language structures, expressions, and basic and academic vocabulary heard during classroom instruction and interactions
ELPS.c.2D monitor understanding of spoken language during classroom instruction and interactions and seek clarification as needed
ELPS.c.2E use visual, contextual, and linguistic support to enhance and confirm understanding of increasingly complex and elaborated spoken language
ELPS.c.2F listen to and derive meaning from a variety of media such as audio tape, video, DVD, and CD ROM to build and reinforce concept and language attainment
ELPS.c.2G understand the general meaning, main points, and important details of spoken language ranging from situations in which topics, language, and contexts are familiar to unfamiliar
ELPS.c.2H understand implicit ideas and information in increasingly complex spoken language commensurate with grade-level learning expectations
ELPS.c.2I demonstrate listening comprehension of increasingly complex spoken English by following directions, retelling or summarizing spoken messages, responding to questions and requests, collaborating with peers, and taking notes commensurate with content and grade-level needs.
ELPS.c.3 The ELL speaks in a variety of modes for a variety of purposes with an awareness of different language registers (formal/informal) using vocabulary with increasing fluency and accuracy in language arts and all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in speaking. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. The student is expected to:
ELPS.c.3A practice producing sounds of newly acquired vocabulary such as long and short vowels, silent letters, and consonant clusters to pronounce English words in a manner that is increasingly comprehensible
ELPS.c.3B expand and internalize initial English vocabulary by learning and using high-frequency English words necessary for identifying and describing people, places, and objects, by retelling simple stories and basic information represented or supported by pictures, and by learning and using routine language needed for classroom communication
ELPS.c.3C speak using a variety of grammatical structures, sentence lengths, sentence types, and connecting words with increasing accuracy and ease as more English is acquired
ELPS.c.3D speak using grade-level content area vocabulary in context to internalize new English words and build academic language proficiency
ELPS.c.3E share information in cooperative learning interactions
ELPS.c.3F ask and give information ranging from using a very limited bank of high-frequency, high-need, concrete vocabulary, including key words and expressions needed for basic communication in academic and social contexts, to using abstract and content-based vocabulary during extended speaking assignments
ELPS.c.3G express opinions, ideas, and feelings ranging from communicating single words and short phrases to participating in extended discussions on a variety of social and grade-appropriate academic topics
ELPS.c.3H narrate, describe, and explain with increasing specificity and detail as more English is acquired
ELPS.c.3I adapt spoken language appropriately for formal and informal purposes
ELPS.c.3J respond orally to information presented in a wide variety of print, electronic, audio, and visual media to build and reinforce concept and language attainment.
ELPS.c.4 The ELL reads a variety of texts for a variety of purposes with an increasing level of comprehension in all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in reading. In order for the ELL to meet grade-level learning expectations across the foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. For Kindergarten and Grade 1, certain of these student expectations apply to text read aloud for students not yet at the stage of decoding written text. The student is expected to:
ELPS.c.4A learn relationships between sounds and letters of the English language and decode (sound out) words using a combination of skills such as recognizing sound-letter relationships and identifying cognates, affixes, roots, and base words
ELPS.c.4B recognize directionality of English reading such as left to right and top to bottom
ELPS.c.4C develop basic sight vocabulary, derive meaning of environmental print, and comprehend English vocabulary and language structures used routinely in written classroom materials
ELPS.c.4D use prereading supports such as graphic organizers, illustrations, and pretaught topic-related vocabulary and other prereading activities to enhance comprehension of written text
ELPS.c.4E read linguistically accommodated content area material with a decreasing need for linguistic accommodations as more English is learned
ELPS.c.4F use visual and contextual support and support from peers and teachers to read grade-appropriate content area text, enhance and confirm understanding, and develop vocabulary, grasp of language structures, and background knowledge needed to comprehend increasingly challenging language
ELPS.c.4G demonstrate comprehension of increasingly complex English by participating in shared reading, retelling or summarizing material, responding to questions, and taking notes commensurate with content area and grade level needs
ELPS.c.4H read silently with increasing ease and comprehension for longer periods
ELPS.c.4I demonstrate English comprehension and expand reading skills by employing basic reading skills such as demonstrating understanding of supporting ideas and details in text and graphic sources, summarizing text, and distinguishing main ideas from details commensurate with content area needs
ELPS.c.4J demonstrate English comprehension and expand reading skills by employing inferential skills such as predicting, making connections between ideas, drawing inferences and conclusions from text and graphic sources, and finding supporting text evidence commensurate with content area needs
ELPS.c.4K demonstrate English comprehension and expand reading skills by employing analytical skills such as evaluating written information and performing critical analyses commensurate with content area and grade-level needs.
ELPS.c.5 The ELL writes in a variety of forms with increasing accuracy to effectively address a specific purpose and audience in all content areas. ELLs may be at the beginning, intermediate, advanced, or advanced high stage of English language acquisition in writing. In order for the ELL to meet grade-level learning expectations across foundation and enrichment curriculum, all instruction delivered in English must be linguistically accommodated (communicated, sequenced, and scaffolded) commensurate with the student's level of English language proficiency. For Kindergarten and Grade 1, certain of these student expectations do not apply until the student has reached the stage of generating original written text using a standard writing system. The student is expected to:
ELPS.c.5A learn relationships between sounds and letters of the English language to represent sounds when writing in English
ELPS.c.5B write using newly acquired basic vocabulary and content-based grade-level vocabulary
ELPS.c.5C spell familiar English words with increasing accuracy, and employ English spelling patterns and rules with increasing accuracy as more English is acquired
ELPS.c.5D edit writing for standard grammar and usage, including subject-verb agreement, pronoun agreement, and appropriate verb tenses commensurate with grade-level expectations as more English is acquired
ELPS.c.5E employ increasingly complex grammatical structures in content area writing commensurate with grade-level expectations, such as:
ELPS.c.5F write using a variety of grade-appropriate sentence lengths, patterns, and connecting words to combine phrases, clauses, and sentences in increasingly accurate ways as more English is acquired
ELPS.c.5G narrate, describe, and explain with increasing specificity and detail to fulfill content area writing needs as more English is acquired.
Last Updated 11/14/2018
Loading
Data is Loading...