Hello, Guest!
 Instructional Focus DocumentMathematical Models with Applications
 TITLE : Unit 12: Data Collection and Research Project SUGGESTED DURATION : 11 days

#### Unit Overview

Introduction
This is a project-based unit where students apply bundled student expectations that address formulating a meaningful hypothesis or question, collecting data by an appropriate method, analyzing the data, drawing reasonable conclusions, and presenting results. Concepts are incorporated into both mathematical and real-world problem situations. According to the Texas Education Agency, mathematical process standards including application, tools and techniques, communication, representations, relationships, and justifications should be integrated (when applicable) with content knowledge and skills so that students are prepared to use mathematics in everyday life, society, and the workplace.

Prior to this Unit
In Grade 2, bar graphs were introduced and were revisited throughout elementary and middle school math. In Grades 3 – 7, students used dot plots to organize and analyze data. In Grade 5, students were introduced to scatterplots. In Grade 6, students were introduced to box plots, histograms, and stem-and-leaf plots. In Grade 7, students were introduced to circle graphs. In middle school students were introduced to mean, median, mode and variance, and applying these to various problem situations. Absolute mean was addressed in Grade 8. In Math Models with Applications Unit 11, students were introduced to the study of research methods, population mean and population proportion, and analysis of marketing and media.

During this Unit
Students determine a meaningful hypothesis or question for which data can be collected and analyzed. Students determine the type of data best used to analyze the hypothesis or question and the appropriate method to collect the data. Students represent and analyze data using tables and appropriate graphs. Students calculate numerical measures of central tendency and measures of variability and distribution as appropriate for the collected data. Students draw conclusions from the graphical and numerical analysis in terms of the hypothesis or question. Students organize results in a written report that includes a description of the type data and collection methods, data tables, appropriate graphical representations, numerical calculations, and conclusions in terms of the hypothesis or question. Students present a summarization of the hypothesis/question that includes visual displays, graphical and numerical analysis, and conclusions through an oral and/or multimedia presentation.

Other considerations: Reference the Mathematics COVID-19 Gap Implementation Tool HS MMA

After this Unit
Students will connect the concepts and extend their analysis skills in subsequent mathematics courses as well as business, economics, or other courses they may take in high school or college.

This unit is supporting the development of the Texas College and Career Readiness Standards (TxCCRS): I. Numeric Reasoning B1; II. Algebraic Reasoning D1, D2; V. Statistical Reasoning A1, B2, C1, C2, C3; VII. Problem Solving and Reasoning A1, A2, A3, A4, A5, B1, C1, D1, D2; VIII. Communication and Representation A1, A2, A3, B1, B2, C1, C2, C3; IX. Connections A1, A2, B1, B2, B3.

Research
According to the Connections Standard for Grades 9-12 from the National Council of Teachers of Mathematics (NCTM), “Instructional programs from pre-kindergarten through grade 12 should enable students to:

• recognize and use connections among mathematical ideas;
• understand how mathematical ideas interconnect and build on one another to produce a coherent whole;
• recognize and apply mathematics in contexts outside of mathematics.

When students can see the connections across different mathematical content areas, they develop a view of mathematics as an integrated whole. As they build on their previous mathematical understandings while learning new concepts, students become increasingly aware of the connections among various mathematical topics. As students' knowledge of mathematics, their ability to use a wide range of mathematical representations, and their access to sophisticated technology and software increase, the connections they make with other academic disciplines, especially the sciences and social sciences, give them greater mathematical power” (NCTM, 2000, p. 354).

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics: Connections standard for grades 9-12. Reston, VA: National Council of Teachers of Mathematics, Inc.
Education Policy Improvement Center (2009), Texas College and Career Standards, Austin, TX, University of Texas Printing.
Texas Education Agency & Texas Higher Education Coordinating Board. (2009). Texas college and career readiness standards. Retrieved from http://www.thecb.state.tx.us/index.cfm?objectid=E21AB9B0-2633-11E8-BC500050560100A9

 Quantitative relationships model problem situations efficiently and can be used to make generalizations, predictions, and critical judgements in everyday life. What patterns exist within different types of quantitative relationships and where are they found in everyday life? Why is the ability to model quantitative relationships in a variety of ways essential to solving problems in everyday life? Statistical displays often reveal patterns within data that can be analyzed to interpret information, inform understanding, make predictions, influence decisions, and solve problems in everyday life with degrees of confidence. How does society use or make sense of the enormous amount of data in our world available at our fingertips? How can data and data displays be purposeful and powerful? Why is it important to be aware of factors that may influence conclusions, predictions, and/or decisions derived from data?
Unit Understandings
and Questions
Overarching Concepts
and Unit Concepts
Performance Assessment(s)
• Data can be collected, analyzed, represented, and presented using various methods to draw conclusions about hypotheses and questions.
• What are the different types of research?
• How can the appropriate type of research be selected to address a particular question?
• What graphical representations and numerical summaries of data can be used to describe univariate and bivariate data?
• How can graphical representations and numerical summaries of data …
• influence conclusions and/or predictions?
• reveal strengths and weaknesses of a set of data?
• How do presentation methods influence the interpretation of conclusions on research?
• Mathematical Modeling
• Social Sciences
• Data
• Graphical, numerical, and analytical summaries
• Conclusions and predictions
• Regression methods
• Associated Mathematical Processes
• Application
• Problem Solving Model
• Tools and Techniques
• Communication
• Representations
• Relationships
• Justification
 Assessment information provided within the TEKS Resource System are examples that may, or may not, be used by your child’s teacher. In accordance with section 26.006 (2) of the Texas Education Code, "A parent is entitled to review each test administered to the parent’s child after the test is administered." For more information regarding assessments administered to your child, please visit with your child’s teacher.

#### MISCONCEPTIONS / UNDERDEVELOPED CONCEPTS

Misconceptions:

• None identified

#### Unit Vocabulary

Related Vocabulary:

 Bar graph Bivariate data Box and whisker plot Circle graph Cluster sample Convenience sample Distribution and variability Dot plot Experiments Five number summary Histogram Independent measures Interquartile range Line graph Matched pairs Mean Median Mode Observations Qualitative data Quantitative data Population standard deviation Range Repeated measures Sample standard deviation Scatterplot Simple random sample Standard deviation Stratified sample Surveys Systematic sample Univariate data Voluntary response sample
Unit Assessment Items System Resources Other Resources

Show this message:

Unit Assessment Items that have been published by your district may be accessed through Search All Components in the District Resources tab. Assessment items may also be found using the Assessment Center if your district has granted access to that tool.

System Resources may be accessed through Search All Components in the District Resources Tab.

Texas Higher Education Coordinating Board – Texas College and Career Readiness Standards

Texas Education Agency – Mathematics Curriculum

Texas Education Agency – STAAR Mathematics Resources

Texas Education Agency Texas Gateway – Revised Mathematics TEKS: Vertical Alignment Charts

Texas Education Agency Texas Gateway – Mathematics TEKS: Supporting Information

Texas Education Agency Texas Gateway – Interactive Mathematics Glossary

Texas Education Agency Texas Gateway – Resources Aligned to Mathematical Models with Applications Mathematics TEKS

Texas Instruments – Graphing Calculator Tutorials

TAUGHT DIRECTLY TEKS

TEKS intended to be explicitly taught in this unit.

TEKS/SE Legend:

• Knowledge and Skills Statements (TEKS) identified by TEA are in italicized, bolded, black text.
• Student Expectations (TEKS) identified by TEA are in bolded, black text.
• Portions of the Student Expectations (TEKS) that are not included in this unit but are taught in previous or future units are indicated by a strike-through.

Specificity Legend:

• Supporting information / clarifications (specificity) written by TEKS Resource System are in blue text.
• Unit-specific clarifications are in italicized, blue text.
• Information from Texas Education Agency (TEA), Texas College and Career Readiness Standards (TxCCRS), Texas Response to Curriculum Focal Points (TxRCFP) is labeled.
TEKS# SE# TEKS SPECIFICITY
M.1 Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
M.1A Apply mathematics to problems arising in everyday life, society, and the workplace.

Apply

MATHEMATICS TO PROBLEMS ARISING IN EVERYDAY LIFE, SOCIETY, AND THE WORKPLACE
Including, but not limited to:

• Mathematical problem situations within and between disciplines
• Everyday life
• Society
• Workplace

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• VII.D. Problem Solving and Reasoning – Real-world problem solving
• VII.D.1. Interpret results of the mathematical problem in terms of the original real-world situation.
• IX.A. Connections – Connections among the strands of mathematics
• IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
• IX.A.2. Connect mathematics to the study of other disciplines.
• IX.B. Connections – Connections of mathematics to nature, real-world situations, and everyday life
• IX.B.1. Use multiple representations to demonstrate links between mathematical and real-world situations.
• IX.B.2. Understand and use appropriate mathematical models in the natural, physical, and social sciences.
• IX.B.3. Know and understand the use of mathematics in a variety of careers and professions.
M.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.

Use

A PROBLEM-SOLVING MODEL THAT INCORPORATES ANALYZING GIVEN INFORMATION, FORMULATING A PLAN OR STRATEGY, DETERMINING A SOLUTION, JUSTIFYING THE SOLUTION, AND EVALUATING THE PROBLEM-SOLVING PROCESS AND THE REASONABLENESS OF THE SOLUTION
Including, but not limited to:

• Problem-solving model
• Analyze given information
• Formulate a plan or strategy
• Determine a solution
• Justify the solution
• Evaluate the problem-solving process and the reasonableness of the solution

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• I.B. Numeric Reasoning – Number sense and number concepts
• I.B.1. Use estimation to check for errors and reasonableness of solutions.
• V.A. Statistical Reasoning – Design a study
• V.A.1. Formulate a statistical question, plan an investigation, and collect data.
• VII.A. Problem Solving and Reasoning – Mathematical problem solving
• VII.A.1. Analyze given information.
• VII.A.2. Formulate a plan or strategy.
• VII.A.3. Determine a solution.
• VII.A.4. Justify the solution.
• VII.A.5. Evaluate the problem-solving process.
• VII.D. Problem Solving and Reasoning – Real-world problem solving
• VII.D.2. Evaluate the problem-solving process.
M.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.

Select

TOOLS, INCLUDING REAL OBJECTS, MANIPULATIVES, PAPER AND PENCIL, AND TECHNOLOGY AS APPROPRIATE, AND TECHNIQUES, INCLUDING MENTAL MATH, ESTIMATION, AND NUMBER SENSE AS APPROPRIATE, TO SOLVE PROBLEMS
Including, but not limited to:

• Appropriate selection of tool(s) and techniques to apply in order to solve problems
• Tools
• Real objects
• Manipulatives
• Paper and pencil
• Technology
• Techniques
• Mental math
• Estimation
• Number sense

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• I.B. Numeric Reasoning – Number sense and number concepts
• I.B.1. Use estimation to check for errors and reasonableness of solutions.
• V.C. Statistical Reasoning – Analyze, interpret, and draw conclusions from data
• V.C.2. Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software.
M.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Communicate

MATHEMATICAL IDEAS, REASONING, AND THEIR IMPLICATIONS USING MULTIPLE REPRESENTATIONS, INCLUDING SYMBOLS, DIAGRAMS, GRAPHS, AND LANGUAGE AS APPROPRIATE
Including, but not limited to:

• Mathematical ideas, reasoning, and their implications
• Multiple representations, as appropriate
• Symbols
• Diagrams
• Graphs
• Language

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• II.D. Algebraic Reasoning – Representing relationships
• II.D.1. Interpret multiple representations of equations, inequalities, and relationships.
• II.D.2. Convert [among multiple representations of equations, inequalities, and relationships.
• VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
• VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
• VIII.A.2. Use mathematical language to represent and communicate the mathematical concepts in a problem.
• VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
• VIII.B. Communication and Representation – Interpretation of mathematical work
• VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
• VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
• VIII.C. Communication and Representation – Presentation and representation of mathematical work
• VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
• VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
• VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
• IX.B. Connections – Connections of mathematics to nature, real-world situations, and everyday life
• IX.B.1. Use multiple representations to demonstrate links between mathematical and real-world situations.
M.1E Create and use representations to organize, record, and communicate mathematical ideas.

Create, Use

REPRESENTATIONS TO ORGANIZE, RECORD, AND COMMUNICATE MATHEMATICAL IDEAS
Including, but not limited to:

• Representations of mathematical ideas
• Organize
• Record
• Communicate
• Evaluation of the effectiveness of representations to ensure clarity of mathematical ideas being communicated
• Appropriate mathematical vocabulary and phrasing when communicating mathematical ideas

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• VIII.B. Communication and Representation – Interpretation of mathematical work
• VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
• VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
• VIII.C. Communication and Representation – Presentation and representation of mathematical work
• VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
• VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
M.1F Analyze mathematical relationships to connect and communicate mathematical ideas.

Analyze

MATHEMATICAL RELATIONSHIPS TO CONNECT AND COMMUNICATE MATHEMATICAL IDEAS
Including, but not limited to:

• Mathematical relationships
• Connect and communicate mathematical ideas
• Conjectures and generalizations from sets of examples and non-examples, patterns, etc.
• Current knowledge to new learning

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• VII.A. Problem Solving and Reasoning – Mathematical problem solving
• VII.A.1. Analyze given information.
• VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
• VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
• VIII.A.2. Use mathematical language to represent and communicate the mathematical concepts in a problem.
• VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
• VIII.B. Communication and Representation – Interpretation of mathematical work
• VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
• VIII.C. Communication and Representation – Presentation and representation of mathematical work
• VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
• VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
• VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
• IX.A. Connections – Connections among the strands of mathematics
• IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
• IX.A.2. Connect mathematics to the study of other disciplines.
M.1G Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

Display, Explain, Justify

MATHEMATICAL IDEAS AND ARGUMENTS USING PRECISE MATHEMATICAL LANGUAGE IN WRITTEN OR ORAL COMMUNICATION
Including, but not limited to:

• Mathematical ideas and arguments
• Validation of conclusions
• Displays to make work visible to others
• Diagrams, visual aids, written work, etc.
• Explanations and justifications
• Precise mathematical language in written or oral communication

Note(s):

• The mathematical process standards may be applied to all content standards as appropriate.
• TxCCRS:
• VII.A. Problem Solving and Reasoning – Mathematical problem solving
• VII.A.4. Justify the solution.
• VII.B. Problem Solving and Reasoning – Proportional reasoning
• VII.B.1. Use proportional reasoning to solve problems that require fractions, ratios, percentages, decimals, and proportions in a variety of contexts using multiple representations.
• VII.C. Problem Solving and Reasoning – Logical reasoning
• VII.C.1. Develop and evaluate convincing arguments.
• VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
• VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
• VIII.B. Communication and Representation – Interpretation of mathematical work
• VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
• VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
• VIII.C. Communication and Representation – Presentation and representation of mathematical work
• VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
M.10 Mathematical modeling in social sciences. The student applies mathematical processes to design a study and use graphical, numerical, and analytical techniques to communicate the results of the study. The student is expected to:
M.10A Formulate a meaningful question, determine the data needed to answer the question, gather the appropriate data, analyze the data, and draw reasonable conclusions.

Formulate

A MEANINGFUL QUESTION

Including, but not limited to:

• Design a study
• Questions about society and social issues
• Within local community, including within the school or class, where data can be collected personally
• Outside local community, where data can be collected online or with other research methods
• Data collected through experiments
• Data collected through observations
• Data collected through studies and research

Determine

THE DATA NEEDED TO ANSWER THE QUESTION

Including, but not limited to:

• Types of data
• Categorical or numerical
• Univariate or bivariate
• Amount of data needed for reasonable analysis
• Methods for data collection
• Surveys
• Experiments
• Observations

Gather

THE APPROPRIATE DATA

Including, but not limited to:

• Types of data
• Qualitative data
• Quantitative data
• Univariate or bivariate
• Categorical or numerical
• Data collection methods
• Conducting surveys
• Simple random sample
• Stratified sample
• Systematic sample
• Cluster sample
• Convenience sample
• Voluntary response sample
• Conducting experiments
• Independent measures
• Repeated measures
• Matched pairs
• Conducting observations
• Direct observation
• Unobtrusive observation
• Conducting online research

Analyze

THE DATA

Including, but not limited to:

• Representations of data
• Tabular
• Graphical
• Numerical analysis of data
• Measures of central tendency
• Mean
• Median
• Mode
• Distribution and variability
• Range
• Interquartile range
• Five number summary
• Standard deviation
• Interpretation and analysis of relationships among data

Draw

REASONABLE CONCLUSIONS

Including, but not limited to:

• Identification trends
• Verification reasonableness of conclusions
• Predictions beyond data collected and analyzed

Note(s):

• Mathematical Models with Applications requires research on their own.
• Various mathematical process standards will be applied to this student expectation as appropriate.
• TxCCRS
• V.A. Statistical Reasoning – Design a study
• V.A.1. Formulate a statistical question, plan an investigation, and collect data.
• V.C. Statistical Reasoning – Analyze, interpret, and draw conclusions from data
• V.C.3. Make predictions using summary statistics.
• VII.A. Problem Solving and Reasoning – Mathematical problem solving
• VII.A.2. Formulate a plan or strategy.
• VII.A.5. Evaluate the problem-solving process.
• VII.D. Problem Solving and Reasoning – Real-world problem solving
• VII.D.1. Interpret results of the mathematical problem in terms of the original real-world situation.
• VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
• VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
• VIII.C. Communication and Representation – Presentation and representation of mathematical work.
• VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
• IX.A. Connections – Connections among the strands of mathematics
• IX.A.2. Connect mathematics to the study of other disciplines.
• IX.B. Connections – Connections of mathematics to nature, real-world situations, and everyday life
• IX.B.1. Use multiple representations to demonstrate links between mathematical and real-world situations.
• IX.B.2. Understand and use appropriate mathematical models in the natural, physical, and social sciences.
• IX.B.3. Know and understand the use of mathematics in a variety of careers and professions.
M.10B Communicate methods used, analyses conducted, and conclusions drawn for a data-analysis project through the use of one or more of the following: a written report, a visual display, an oral report, or a multi-media presentation.

Communicate

METHODS USED, ANALYSES CONDUCTED, AND CONCLUSIONS DRAWN FOR A DATA-ANALYSIS PROJECT THROUGH THE USE OF ONE OR MORE OF THE FOLLOWING: A WRITTEN REPORT, A VISUAL DISPLAY, AN ORAL REPORT, OR A MULTI-MEDIA PRESENTATION

Including, but not limited to:

• Written report
• Language arts format
• Story format
• Art format
• Scientific experiment/report
• Visual display
• Poster
• Artistic/graphic arts picture
• Oral report
• New report format
• Poetic presentation
• Musical presentation
• Character presentation
• Multi-media presentation
• PowerPoint presentation
• Video presentation
• Prezi presentation
• Combination of any of the above
• All presentations should include:
• Method of data collection
• Problems or inconsistencies encountered
• Report of actual data
• Graphical representation of data
• Numerical analysis of data
• Conclusions or predictions that follow from the data analysis

Note(s):

• Mathematical Models with Applications requires communication by presentation.
• Various mathematical process standards will be applied to this student expectation as appropriate.
• TxCCRS
• V.B. Statistical Reasoning – Describe data
• V.B.2. Construct appropriate visual representations of data.
• V.C. Statistical Reasoning – Analyze, interpret, and draw conclusions from data
• V.C.1. Analyze data sets using graphs and summary statistics.
• VII.B. Problem Solving and Reasoning – Proportional reasoning
• VII.B.1. Use proportional reasoning to solve problems that require fractions, ratios, percentages, decimals, and proportions in a variety of contexts using multiple representations.
• VII.C. Problem Solving and Reasoning – Logical reasoning
• VII.C.1. Develop and evaluate convincing arguments.
• VIII.B. Communication and Representation – Interpretation of mathematical work
• VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
• VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
• VIII.C. Communication and Representation – Presentation and representation of mathematical work
• VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
• VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
• VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
• IX.A. Connections – Connections among the strands of mathematics
• IX.A.2. Connect mathematics to the study of other disciplines.
• IX.B. Connections – Connections of mathematics to nature, real-world situations, and everyday life
• IX.B.1. Use multiple representations to demonstrate links between mathematical and real-world situations.
• IX.B.2. Understand and use appropriate mathematical models in the natural, physical, and social sciences.
• IX.B.3. Know and understand the use of mathematics in a variety of careers and professions.