A.1 
Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:


A.1A 
Apply mathematics to problems arising in everyday life, society, and the workplace.
Process Standard

Apply
MATHEMATICS TO PROBLEMS ARISING IN EVERYDAY LIFE, SOCIETY, AND THE WORKPLACE Including, but not limited to:
 Mathematical problem situations within and between disciplines
 Everyday life
 Society
 Workplace
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 VII.D. Problem Solving and Reasoning – Realworld problem solving
 VII.D.1. Interpret results of the mathematical problem in terms of the original realworld situation.
 IX.A. Connections – Connections among the strands of mathematics
 IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
 IX.A.2. Connect mathematics to the study of other disciplines.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.1. Use multiple representations to demonstrate links between mathematical and realworld situations.
 IX.B.2. Understand and use appropriate mathematical models in the natural, physical, and social sciences.
 IX.B.3. Know and understand the use of mathematics in a variety of careers and professions.

A.1B 
Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problemsolving process and the reasonableness of the solution.
Process Standard

Use
A PROBLEMSOLVING MODEL THAT INCORPORATES ANALYZING GIVEN INFORMATION, FORMULATING A PLAN OR STRATEGY, DETERMINING A SOLUTION, JUSTIFYING THE SOLUTION, AND EVALUATING THE PROBLEMSOLVING PROCESS AND THE REASONABLENESS OF THE SOLUTION Including, but not limited to:
 Problemsolving model
 Analyze given information
 Formulate a plan or strategy
 Determine a solution
 Justify the solution
 Evaluate the problemsolving process and the reasonableness of the solution
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 I.B. Numeric Reasoning – Number sense and number concepts
 I.B.1. Use estimation to check for errors and reasonableness of solutions.
 V.A. Statistical Reasoning – Design a study
 V.A.1. Formulate a statistical question, plan an investigation, and collect data.
 VII.A. Problem Solving and Reasoning – Mathematical problem solving
 VII.A.1. Analyze given information.
 VII.A.2. Formulate a plan or strategy.
 VII.A.3. Determine a solution.
 VII.A.4. Justify the solution.
 VII.A.5. Evaluate the problemsolving process.
 VII.D. Problem Solving and Reasoning – Realworld problem solving
 VII.D.2. Evaluate the problemsolving process.

A.1C 
Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
Process Standard

Select
TOOLS, INCLUDING REAL OBJECTS, MANIPULATIVES, PAPER AND PENCIL, AND TECHNOLOGY AS APPROPRIATE, AND TECHNIQUES, INCLUDING MENTAL MATH, ESTIMATION, AND NUMBER SENSE AS APPROPRIATE, TO SOLVE PROBLEMS Including, but not limited to:
 Appropriate selection of tool(s) and techniques to apply in order to solve problems
 Tools
 Real objects
 Manipulatives
 Paper and pencil
 Technology
 Techniques
 Mental math
 Estimation
 Number sense
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 I.B. Numeric Reasoning – Number sense and number concepts
 I.B.1. Use estimation to check for errors and reasonableness of solutions.
 V.C. Statistical Reasoning – Analyze, interpret, and draw conclusions from data
 V.C.2. Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software.

A.1D 
Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
Process Standard

Communicate
MATHEMATICAL IDEAS, REASONING, AND THEIR IMPLICATIONS USING MULTIPLE REPRESENTATIONS, INCLUDING SYMBOLS, DIAGRAMS, GRAPHS, AND LANGUAGE AS APPROPRIATE Including, but not limited to:
 Mathematical ideas, reasoning, and their implications
 Multiple representations, as appropriate
 Symbols
 Diagrams
 Graphs
 Language
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 II.D. Algebraic Reasoning – Representing relationships
 II.D.1. Interpret multiple representations of equations, inequalities, and relationships.
 II.D.2. Convert among multiple representations of equations, inequalities, and relationships.
 VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
 VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
 VIII.A.2. Use mathematical language to represent and communicate the mathematical concepts in a problem.
 VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
 VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.1. Use multiple representations to demonstrate links between mathematical and realworld situations.

A.1E 
Create and use representations to organize, record, and communicate mathematical ideas.
Process Standard

Create, Use
REPRESENTATIONS TO ORGANIZE, RECORD, AND COMMUNICATE MATHEMATICAL IDEAS Including, but not limited to:
 Representations of mathematical ideas
 Organize
 Record
 Communicate
 Evaluation of the effectiveness of representations to ensure clarity of mathematical ideas being communicated
 Appropriate mathematical vocabulary and phrasing when communicating mathematical ideas
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.

A.1F 
Analyze mathematical relationships to connect and communicate mathematical ideas.
Process Standard

Analyze
MATHEMATICAL RELATIONSHIPS TO CONNECT AND COMMUNICATE MATHEMATICAL IDEAS Including, but not limited to:
 Mathematical relationships
 Connect and communicate mathematical ideas
 Conjectures and generalizations from sets of examples and nonexamples, patterns, etc.
 Current knowledge to new learning
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 VII.A. Problem Solving and Reasoning – Mathematical problem solving
 VII.A.1. Analyze given information.
 VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
 VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
 VIII.A.2. Use mathematical language to represent and communicate the mathematical concepts in a problem.
 VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
 VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
 IX.A. Connections – Connections among the strands of mathematics
 IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
 IX.A.2. Connect mathematics to the study of other disciplines.

A.1G 
Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
Process Standard

Display, Explain, Justify
MATHEMATICAL IDEAS AND ARGUMENTS USING PRECISE MATHEMATICAL LANGUAGE IN WRITTEN OR ORAL COMMUNICATION
Including, but not limited to:
 Mathematical ideas and arguments
 Validation of conclusions
 Displays to make work visible to others
 Diagrams, visual aids, written work, etc.
 Explanations and justifications
 Precise mathematical language in written or oral communication
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxCCRS:
 VII.A. Problem Solving and Reasoning – Mathematical problem solving
 VII.A.4. Justify the solution.
 VII.B. Problem Solving and Reasoning – Proportional reasoning
 VII.B.1. Use proportional reasoning to solve problems that require fractions, ratios, percentages, decimals, and proportions in a variety of contexts using multiple representations.
 VII.C. Problem Solving and Reasoning – Logical reasoning
 VII.C.1. Develop and evaluate convincing arguments.
 VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
 VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.

A.8 
Quadratic functions and equations. The student applies the mathematical process standards to solve, with and without technology, quadratic equations and evaluate the reasonableness of their solutions. The student formulates statistical relationships and evaluates their reasonableness based on realworld data. The student is expected to:


A.8A 
Solve quadratic equations having real solutions by factoring, taking square roots, completing the square, and applying the quadratic formula.
Readiness Standard

Solve
QUADRATIC EQUATIONS HAVING REAL SOLUTIONS BY FACTORING, TAKING SQUARE ROOTS, COMPLETING THE SQUARE, AND APPLYING THE QUADRATIC FORMULA
Including, but not limited to:
 Quadratic equation in one variable – a seconddegree polynomial function that can be described in standard form by 0 = ax^{2} + bx + c, where a ≠ 0
 Methods for solving quadratic equations with and without technology
 Concrete models
 Applicable only with quadratic equations that when set equal to zero the expression can be factored
 Algebraic methods
 Factoring
 Square roots
 Completing the square
 Quadratic formula,
 Solution sets of quadratic equations
 Two solutions
 One solution (double root)
 No real solutions, Ø
 Realworld problem situations and/or data collection activity involving a quadratic function with and without technology
 Quadratic equation to represent the realworld problem situation
 Method of choice to solve
Note(s):
 Grade Level(s):
 Algebra I introduces solving quadratic equations.
 Algebra II will introduce solving equations involving absolute value (e.g., x^{2} = 25, = , x = 5; therefore, x = ±5) .
 Algebra II will continue to solve and apply quadratic equations, including imaginary solutions.
 Algebra II will solve quadratic inequalities.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxCCRS:
 II.A. Algebraic Reasoning – Identifying expressions and equations
 II.A.1. Explain the difference between expressions and equations.
 II.C. Algebraic Reasoning – Solving equations, inequalities, and systems of equations and inequalities
 II.C.2. Explain the difference between the solution set of an equation and the solution set of an inequality.
 II.C.3. Recognize and use algebraic properties, concepts, and algorithms to solve equations, inequalities, and systems of linear equations and inequalities.
 VII.A. Problem Solving and Reasoning – Mathematical problem solving
 VII.A.3. Determine a solution.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.2. Understand and use appropriate mathematical models in the natural, physical, and social sciences.

A.11 
Number and algebraic methods. The student applies the mathematical process standards and algebraic methods to rewrite algebraic expressions into equivalent forms. The student is expected to:


A.11A 
Simplify numerical radical expressions involving square roots.
Supporting Standard

Note(s):
 Grade Level(s):
 Algebra I simplifies numerical radical expressions involving square roots.
 Algebra II will simplify radical expressions involving variables.
 Algebra II will simplify radical expressions of various indices.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxCCRS:
 I.B. Numeric Reasoning – Number sense and number concepts
 I.B.2. Interpret the relationships between the different representations of numbers.
 II.A. Algebraic Reasoning – Identifying expressions and equations
 II.A.1. Explain the difference between expressions and equations.
 II.B. Algebraic Reasoning – Manipulating expressions
 II.B.1. Recognize and use algebraic properties, concepts, and algorithms to combine, transform, and evaluate expressions (e.g., polynomials, radicals, rational expressions).

A.12 
Number and algebraic methods. The student applies the mathematical process standards and algebraic methods to write, solve, analyze, and evaluate equations, relations, and functions. The student is expected to:


A.12E 
Solve mathematic and scientific formulas, and other literal equations, for a specified variable.
Supporting Standard

Solve
MATHEMATIC AND SCIENTIFIC FORMULAS, AND OTHER LITERAL EQUATIONS, FOR A SPECIFIED VARIABLE
Including, but not limited to:
 Literal equations – equations in which all or part of the terms are expressed in variables
 Two variable linear equations
 Mathematical formulas
 Scientific formulas
 Transforming literal equations is subsumed within solving
 Solving for one of the variables in two variable linear equations.
 Solving formulas for a specified variable
 Mathematical formulas
 Scientific formulas
Note(s):
 Grade Level(s):
 Algebra I introduces solving mathematical formulas and literal equations.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxCCRS:
 II.A. Algebraic Reasoning – Identifying expressions and equations
 II.A.1. Explain the difference between expressions and equations.
 II.B. Algebraic Reasoning – Manipulating expressions
 II.B.1. Recognize and use algebraic properties, concepts, and algorithms to combine, transform, and evaluate expressions (e.g., polynomials, radicals, rational expressions).
 II.C. Algebraic Reasoning – Solving equations, inequalities, and systems of equations and inequalities
 II.C.3. Recognize and use algebraic properties, concepts, and algorithms to solve equations, inequalities, and systems of linear equations and inequalities.
