6.1 
Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:


6.1A 
Apply mathematics to problems arising in everyday life, society, and the workplace.
Process Standard

Apply
MATHEMATICS TO PROBLEMS ARISING IN EVERYDAY LIFE, SOCIETY, AND THE WORKPLACE
Including, but not limited to:
 Mathematical problem situations within and between disciplines
 Everyday life
 Society
 Workplace
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 Using expressions and equations to represent relationships in a variety of contexts
 Understanding data representation
 TxCCRS:
 VII.D. Problem Solving and Reasoning – Realworld problem solving
 VII.D.1. Interpret results of the mathematical problem in terms of the original realworld situation.
 IX.A. Connections – Connections among the strands of mathematics
 IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
 IX.A.2. Connect mathematics to the study of other disciplines.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.1. Use multiple representations to demonstrate links between mathematical and realworld situations.
 IX.B.2. Understand and use appropriate mathematical models in the natural, physical, and social sciences.
 IX.B.3. Know and understand the use of mathematics in a variety of careers and professions.

6.1C 
Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
Process Standard

Select
TOOLS, INCLUDING REAL OBJECTS, MANIPULATIVES, PAPER AND PENCIL, AND TECHNOLOGY AS APPROPRIATE, AND TECHNIQUES, INCLUDING NUMBER SENSE AS APPROPRIATE, TO SOLVE PROBLEMS
Including, but not limited to:
 Appropriate selection of tool(s) and techniques to apply in order to solve problems
 Tools
 Real objects
 Manipulatives
 Paper and pencil
 Technology
 Techniques
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 Using expressions and equations to represent relationships in a variety of contexts
 Understanding data representation
 TxCCRS:
 I.B. Numeric Reasoning – Number sense and number concepts
 I.B.1. Use estimation to check for errors and reasonableness of solutions.
 V.C. Statistical Reasoning – Analyze, interpret, and draw conclusions from data
 V.C.2. Analyze relationships between paired data using spreadsheets, graphing calculators, or statistical software.

6.1D 
Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
Process Standard

Communicate
MATHEMATICAL IDEAS, REASONING, AND THEIR IMPLICATIONS USING MULTIPLE REPRESENTATIONS, INCLUDING SYMBOLS, DIAGRAMS, AND LANGUAGE AS APPROPRIATE
Including, but not limited to:
 Mathematical ideas, reasoning, and their implications
 Multiple representations, as appropriate
 Symbols
 Diagrams
 Language
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 Using expressions and equations to represent relationships in a variety of contexts
 Understanding data representation
 TxCCRS:
 II.D. Algebraic Reasoning – Representing relationships
 II.D.1. Interpret multiple representations of equations, inequalities, and relationships.
 II.D.2. Convert among multiple representations of equations, inequalities, and relationships.
 VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
 VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
 VIII.A.2. Use mathematical language to represent and communicate the mathematical concepts in a problem.
 VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
 VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.1. Use multiple representations to demonstrate links between mathematical and realworld situations.

6.1E 
Create and use representations to organize, record, and communicate mathematical ideas.
Process Standard

Create, Use
REPRESENTATIONS TO ORGANIZE, RECORD, AND COMMUNICATE MATHEMATICAL IDEAS
Including, but not limited to:
 Representations of mathematical ideas
 Organize
 Record
 Communicate
 Evaluation of the effectiveness of representations to ensure clarity of mathematical ideas being communicated
 Appropriate mathematical vocabulary and phrasing when communicating mathematical ideas
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 Using expressions and equations to represent relationships in a variety of contexts
 Understanding data representation
 TxCCRS:
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.

6.1F 
Analyze mathematical relationships to connect and communicate mathematical ideas.
Process Standard

Analyze
MATHEMATICAL RELATIONSHIPS TO CONNECT AND COMMUNICATE MATHEMATICAL IDEAS
Including, but not limited to:
 Mathematical relationships
 Connect and communicate mathematical ideas
 Conjectures and generalizations from sets of examples and nonexamples, patterns, etc.
 Current knowledge to new learning
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 Using expressions and equations to represent relationships in a variety of contexts
 Understanding data representation
 TxCCRS:
 VII.A. Problem Solving and Reasoning – Mathematical problem solving
 VII.A.1. Analyze given information.
 VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
 VIII.A.1. Use mathematical symbols, terminology, and notation to represent given and unknown information in a problem.
 VIII.A.2. Use mathematical language to represent and communicate the mathematical concepts in a problem.
 VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.1. Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, models, graphs, and words.
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.
 VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.
 IX.A. Connections – Connections among the strands of mathematics
 IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
 IX.A.2. Connect mathematics to the study of other disciplines.

6.1G 
Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
Process Standard

Display, Explain, Justify
MATHEMATICAL IDEAS AND ARGUMENTS USING PRECISE MATHEMATICAL LANGUAGE IN WRITTEN OR ORAL COMMUNICATION
Including, but not limited to:
 Mathematical ideas and arguments
 Validation of conclusions
 Displays to make work visible to others
 Diagrams, visual aids, written work, etc.
 Explanations and justifications
 Precise mathematical language in written or oral communication
Note(s):
 The mathematical process standards may be applied to all content standards as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 Using expressions and equations to represent relationships in a variety of contexts
 Understanding data representation
 TxCCRS:
 VII.A. Problem Solving and Reasoning – Mathematical problem solving
 VII.A.4. Justify the solution.
 VII.B. Problem Solving and Reasoning – Proportional reasoning
 VII.B.1. Use proportional reasoning to solve problems that require fractions, ratios, percentages, decimals, and proportions in a variety of contexts using multiple representations.
 VII.C. Problem Solving and Reasoning – Logical reasoning
 VII.C.1. Develop and evaluate convincing arguments.
 VIII.A. Communication and Representation – Language, terms, and symbols of mathematics
 VIII.A.3. Use mathematical language for reasoning, problem solving, making connections, and generalizing.
 VIII.B. Communication and Representation – Interpretation of mathematical work
 VIII.B.1. Model and interpret mathematical ideas and concepts using multiple representations.
 VIII.B.2. Summarize and interpret mathematical information provided orally, visually, or in written form within the given context.
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.3. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.

6.2 
Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:


6.2A 
Classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.
Supporting Standard

Classify
WHOLE NUMBERS, INTEGERS, AND RATIONAL NUMBERS USING A VISUAL REPRESENTATION
Including, but not limited to:
 Counting (natural) numbers – the set of positive numbers that begins at one and increases by increments of one each time {1, 2, 3, ..., n}
 Whole numbers – the set of counting (natural) numbers and zero {0, 1, 2, 3, ..., n}
 Integers – the set of counting (natural) numbers, their opposites, and zero {–n, …, –3, –2, –1, 0, 1, 2, 3, ..., n}. The set of integers is denoted by the symbol Z.
 Rational numbers – the set of numbers that can be expressed as a fraction , where a and b are integers and b ≠ 0. The set of rational numbers is denoted by the symbol Q.
 Visual representations of the relationships between sets and subsets of rational numbers
To Describe
RELATIONSHIPS BETWEEN SETS OF NUMBERS
Including, but not limited to:
 All counting (natural) numbers are a subset of whole numbers, integers, and rational numbers.
 All whole numbers are a subset of integers and rational numbers.
 All integers are a subset of rational numbers.
 All counting (natural) numbers, whole numbers, and integers are a subset of rational numbers.
 Not all rational numbers are an integer, whole number, or counting (natural) number.
 Terminating and repeating decimals are rational numbers but not integers, whole numbers, or counting (natural) numbers.
Note(s):
 Grade Level(s):
 Prior to Grade 6 counting (natural) numbers, whole numbers, and positive rational numbers were developed.
 Grade 6 introduces classifying whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.
 Grade 7 will extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of rational numbers.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxRCFP:
 Grade Level Connections (reinforces previous learning and/or provides development for future learning)
 TxCCRS:
 VIII.C. Communication and Representation – Presentation and representation of mathematical work
 VIII.C.2. Create and use representations to organize, record, and communicate mathematical ideas.

6.2C 
Locate, compare, and order integers and rational numbers using a number line.
Supporting Standard

Locate, Compare, Order
INTEGERS AND RATIONAL NUMBERS USING A NUMBER LINE
Including, but not limited to:
 Integers – the set of counting (natural numbers), their opposites, and zero {n, …, 3, 2, 1, 0, 1, 2, 3, ..., n}. The set of integers is denoted by the symbol Z.
 Rational numbers – the set of numbers that can be expressed as a fraction , where a and b are integers and b ≠ 0. The set of rational numbers is denoted by the symbol Q.
 Various forms of positive and negative rational numbers
 Integers
 Decimals
 Fractions
 Percents
 Relationship between equivalence of various forms of rational numbers
 All integers and rational numbers can be located as a specified point on a number line.
 Characteristics of a number line
 A number line begins as a line with predetermined intervals (or tick marks) with positions/numbers labeled.
 A minimum of two positions/numbers should be labeled.
 Numbers on a number line represent the distance from zero.
 The distance between the tick marks is counted rather than the tick marks themselves.
 The placement of the labeled positions/numbers on a number line determines the scale of the number line.
 Intervals between position/numbers are proportional.
 When reasoning on a number line, the position of zero may or may not be placed.
 When working with larger numbers, a number line without the constraint of distance from zero allows the ability to “zoomin” on the relevant section of the number line.
 Number lines extend infinitely in both directions (arrows indicate the number line continues infinitely).
 Numbers increase from left to right on a horizontal number line and from bottom to top on a vertical number line.
 Points to the left of a specified point on a horizontal number line are less than points to the right.
 Points to the right of a specified point on a horizontal number line are greater than points to the left.
 Points below a specified point on a vertical number line are less than points above.
 Points above a specified point on a vertical number line are greater than points below.
 Characteristics of an open number line
 An open number line begins as a line with no intervals (or tick marks) and no positions/numbers labeled.
 Numbers/positions are placed on the empty number line only as they are needed.
 When reasoning on an open number line, the position of zero is often not placed.
 When working with larger numbers, an open number line without the constraint of distance from zero allows the ability to “zoomin” on the relevant section of the number line.
 The placement of the first two numbers on an open number line determines the scale of the number line.
 Once the scale of the number line has been established by the placement of the first two numbers, intervals between additional numbers placed are approximately proportional.
 The differences between numbers are approximated by the distance between the positions on the number line.
 Open number lines extend infinitely in both directions (arrows indicate the number line continues infinitely).
 Numbers increase from left to right on a horizontal number line and from bottom to top on a vertical number line.
 Points to the left of a specified point on a horizontal number line are less than points to the right.
 Points to the right of a specified point on a horizontal number line are greater than points to the left.
 Points below a specified point on a vertical number line are less than points above.
 Points above a specified point on a vertical number line are greater than points below.
 Landmark (or anchor) numbers may be placed on the open number line to help locate other numbers.
 Relative magnitude of a number describes the size of a number and its relationship to another number.
 Comparison words and symbols
 Inequality words and symbols
 Greater than (>)
 Less than (<)
 Equality words and symbol
 Quantifying descriptor in mathematical and realworld problem situations (e.g., between two given numbers, greatest/least, ascending/descending, tallest/shortest, warmest/coldest, fastest/slowest, longest/shortest, heaviest/lightest, closest/farthest, oldest/youngest, etc.)
Note(s):
 Grade Level(s):
 Grade 4 represented fractions and decimals to the tenths or hundredths as distances from zero on a number line.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems

6.2D 
Order a set of rational numbers arising from mathematical and realworld contexts.
Readiness Standard

Order
A SET OF RATIONAL NUMBERS ARISING FROM MATHEMATICAL AND REALWORLD CONTEXTS
Including, but not limited to:
 Rational numbers – the set of numbers that can be expressed as a fraction , where a and b are integers and b ≠ 0. The set of rational numbers is denoted by the symbol Q.
 Various forms of positive and negative rational numbers
 Integers
 Decimals
 Fractions
 Percents
 Place value – the value of a digit as determined by its location in a number such as ones, tens, hundreds, one thousands, ten thousands, etc.
 Order numbers – to arrange a set of numbers based on their numerical value
 Number lines (horizontal/vertical)
 Numbers increase from left to right on a horizontal number line and from bottom to top on a vertical number line.
 Points to the left of a specified point on a horizontal number line are less than points to the right.
 Points to the right of a specified point on a horizontal number line are greater than points to the left.
 Points below a specified point on a vertical number line are less than points above.
 Points above a specified point on a vertical number line are greater than points below.
 Quantifying descriptor in mathematical and realworld problem situations (e.g., between two given numbers, greatest/least, ascending/descending, tallest/shortest, warmest/coldest, fastest/slowest, longest/shortest, heaviest/lightest, closest/farthest, oldest/youngest, etc.)
Note(s):
 Grade Level(s):
 Grade 5 compared and ordered two decimals to the thousandths place and represented the comparisons using the symbols >, <, or =.
 Grade 8 will order a set of real numbers arising from mathematical and realworld contexts.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxRCFP:
 Using operations with integers and positive rational numbers to solve problems
 TxCCRS:
 I.A. Numeric Reasoning – Number representations and operations
 I.A.1. Compare relative magnitudes of rational and irrational numbers, and understand that numbers can be represented in different ways.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.1. Use multiple representations to demonstrate links between mathematical and realworld situations.

6.4 
Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:


6.4G 
Generate equivalent forms of fractions, decimals, and percents using realworld problems, including problems that involve money.
Readiness Standard

Generate
EQUIVALENT FORMS OF FRACTIONS, DECIMALS, AND PERCENTS USING REALWORLD PROBLEMS
Including, but not limited to:
 Positive rational numbers – the set of numbers that can be expressed as a fraction , where a and b are counting (natural) numbers
 Various forms of positive rational numbers
 Counting (natural) numbers
 Decimals
 Fractions
 Percents
 Percent – a part of a whole expressed in hundredths
 Equivalent forms of positive rational numbers in realworld problem situations
 Given a fraction, generate a decimal and percent
 Given a decimal, generate a fraction and percent
 Given a percent, generate a fraction and decimal
Note(s):
 Grade Level(s):
 Grade 6 introduces generating equivalent forms of fractions, decimals, and percents using realworld problems, including problems that involve money.
 Grade 6 introduces ordering a set of rational numbers arising from mathematical and realworld contexts.
 Grade 7 will solve problems involving ratios, rates, and percents, including multistep problems involving percent increase and percent decrease, and financial literacy problems.
 Various mathematical process standards will be applied to this student expectation as appropriate.
 TxRCFP:
 Understanding and applying ratios and rates and using equivalent ratios to represent proportional relationships
 TxCCRS:
 VII.B. Problem Solving and Reasoning – Proportional reasoning
 VII.B.1. Use proportional reasoning to solve problems that require fractions, ratios, percentages, decimals, and proportions in a variety of contexts using multiple representations.
 IX.A. Connections – Connections among the strands of mathematics
 IX.A.1. Connect and use multiple key concepts of mathematics in situations and problems.
 IX.B. Connections – Connections of mathematics to nature, realworld situations, and everyday life
 IX.B.1. Use multiple representations to demonstrate links between mathematical and realworld situations.
